吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (2): 339-0346.

• • 上一篇    下一篇

基于粗糙集的去噪扩散概率方法

佘志用1, 郭晓新2, 冯月萍2, 张东坡1   

  1. 1. 新疆政法学院 信息网络安全学院, 新疆 图木舒克 844000;2. 吉林大学 计算机科学与技术学院, 长春 130012
  • 收稿日期:2023-04-18 出版日期:2024-03-26 发布日期:2024-03-26
  • 通讯作者: 冯月萍 E-mail:fengyp@jlu.edu.cn

Probability Method of Denoising Diffusion Based on  Rough Sets

SHE Zhiyong1, GUO Xiaoxin2, FENG Yueping2, ZHANG Dongpo1   

  1. 1. School of Information Network Security, Xinjiang University of Political Science and Law, Tumxuk 844000, Xinjiang Uygur Autonomous Region, China; 2. College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2023-04-18 Online:2024-03-26 Published:2024-03-26

摘要: 基于非Markov链去噪扩散隐式模型(DDIM), 提出一种粗糙集的去噪扩散概率方法, 用粗糙集理论对采样的原序列等价划分, 在原序列上构建子序列的上下近似集和粗糙度, 当粗糙度最小时获取非Markov链去噪扩散隐式模型的有效子序列. 利用去噪扩散概率模型(DDPM)和DDIM进行对比实验, 实验结果表明, 该方法获取的序列是有效子序列, 且在该序列上的采样效率优于DDPM.

关键词: 粗糙集, 去噪扩散概率模型, 非Markov链去噪扩散概率模型, Markov链

Abstract: Based on non Markov chain denoising diffusion implicit model (DDIM), we proposed  probability method of denoising diffusion based on  rough sets. The rough set theory was used to equivalently partition the sampled original sequence, construct the upper and lower approximation sets and roughness of the subsequences on the original sequence, and obtain the effective subsequences of the non Markov chain DDIM when the roughness was the lowest. The comparative experiments were conducted by the denoising diffusion probability model (DDPM) and DDIM,  and the experimental results  show that the sequence obtained by proposed method is an effective subsequence, and the sampling efficiency on this sequence is better than that of the DDPM.

Key words: rough set, denoising diffusion probability model, non Markov chain denoising diffusion probability model, Markov chain

中图分类号: 

  • TP391.4