吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (4): 858-865.

• • 上一篇    下一篇

一类非齐次核有界积分算子的反问题

张丽娟1, 洪勇1, 廖建全2   

  1. 1. 广州华商学院 数据科学学院, 广州 511300; 2. 广东第二师范学院 数学学院, 广州 510303
  • 收稿日期:2023-11-29 出版日期:2024-07-26 发布日期:2024-07-26
  • 通讯作者: 洪勇 E-mail:hongyonggdcc@yeah.net

Inverse Problem for a Class of Bounded Integral Operators with Non-homogeneous Kernel

ZHANG Lijuan1, HONG Yong1, LIAO Jianquan2   

  1. 1. College of Data Science, Guangzhou Huashang College, Guangzhou 511300, China;
    2. College of Mathematics, Guangdong University of Education, Guangzhou 510303, China
  • Received:2023-11-29 Online:2024-07-26 Published:2024-07-26

摘要: 基于有界算子的本质之一: 当原象集有界时象集一定有界, 提出算子有界的反问题, 即当算子T的象集有界时, 如何判断其原象集有界. 先引入算子反向有界的概念, 再利用权函数方法和实分析技巧, 讨论积分算子反向有界的等价参数条件, 并给出反向有界积分算子的构造定理. 最后给出一些特例.

关键词: 非齐次核, 积分算子, 反向有界算子, 逆向Hilbert型积分不等式, 构造定理

Abstract: One of the essence of  bounded operators  is that the  image set must be bounded when the original  image set is bounded, we propose  the inverse problem of operator boundedness: how to determine the boundedness of   the original image set of an operator T  when its image set is bounded. We first introduce the concept of operator reverse boundedness, and then use weight  function method and real analysis techniques to discuss  the equivalent parametric conditions for  reverse boundedness of integral operators, and give  a construction theorem for reverse boundedness of  integral operators. Finally, some special cases are given.

Key words: non-homogeneous kernel, integral operator, reverse bounded operator, inverse Hilbert-type integral inequality, construction theorem

中图分类号: 

  • O178