吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (4): 895-904.

• • 上一篇    下一篇

基于3D先验特征的人脸超分辨率重建算法

姚汉群1, 刘广文1, 王超2, 杨依宁3, 才华1, 付强4   

  1. 1. 长春理工大学 电子信息工程学院, 长春 130022; 2. 长春理工大学 空间光电技术国家与地方联合工程研究中心, 长春 130022;
    3. 电磁空间安全全国重点实验室, 天津 300308;4. 长春理工大学 空间光电技术研究所, 长春 130022
  • 收稿日期:2023-05-26 出版日期:2024-07-26 发布日期:2024-07-26
  • 通讯作者: 刘广文 E-mail:lgwen_2003@126.com

Facial Super-resolution Reconstruction Algorithm Based on 3D  Prior Features

YAO Hanqun1, LIU Guangwen1, WANG Chao2, YANG Yining3, CAI Hua1, FU Qiang4   

  1. 1. School of Electronic Information Engineer, Changchun University of Science and Technology, Changchun 130022, China; 2. National and Local Joint Engineering Research Center for Space Optoelectronics Technology, Changchun University of Science and Technology, Changchun 130022, China; 3. National Key Laboratory of Electromagnetic Space Security, Tianjin 300308, China; 4. School of Opto-Electronic Engineer, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2023-05-26 Online:2024-07-26 Published:2024-07-26

摘要: 为有效解决复杂环境下人脸超分辨率特征恢复的问题, 提出一种全新的人脸超分辨率网络. 该网络通过融合3D渲染先验知识和双重注意力机制, 增强了对人脸空间位置和整体结构的理解, 同时提高了细节信息的恢复能力. 在数据集CelebAMask-HQ上的实验结果表明: 对放大4倍下采样的人脸, 该算法在峰值信噪比和结构相似性上达到28.76 dB和0.827 5; 对放大8倍下采样的人脸, 峰值信噪比和结构相似性评价指标达到26.29 dB和0.754 9. 与同类的SAM3D算法相比, 该算法在处理放大4倍下采样时的峰值信噪比和结构相似性上分别提升了4.09,1.93个百分点, 在处理放大8倍下采样时上述两个指标分别提升了2.02,4.54个百分点. 从而证明该算法的优越性, 也表明在实际应用中人脸的超分辨率恢复能获得更真实和清晰的视觉效果.

关键词: 机器视觉, 人脸超分辨率, 3D先验, 注意力机制

Abstract: In order to effectively solve  the problem of facial super-resolution feature recovery in complex environments, we proposed a novel facial super-resolution network. By integrating 3D rendering prior knowledge and a dual attention mechanism, the network enhanced the understanding of the facial spatial position and overall structure while improving the ability to recover detailed information. The experimental results on the CelebAMask-HQ dataset show that  the proposed algorithm achieves peak signal-to-noise ratio and  structural similarity of 28.76 dB  and  0.827 5 for  downsampled faces magnified by 4 times, and  26.29 dB and 0.754 9 for downsampled faces magnified by 8 times.   Compared with the similar SAM3D algorithm, the proposed algorithm improves the peak signal-to-noise ratio and  structural similarity by  4.09 and 1.93 percentage points when dealing with  4 times  downsampling, and by 2.02 and 4.54 percentage points  when dealing with 8 times downsampling, respectively.  This proves the superiority of the proposed  algorithm and  also indicates that  facial super-resolution recovery can achieve more realistic and clear visual effects in practical applications.

Key words: machine vision, facial super-resolution, 3D prior, attention mechanism

中图分类号: 

  • TP391