吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (4): 886-894.

• • 上一篇    下一篇

基于改进YOLOv7的麦穗检测算法

陈森, 徐伟峰, 王洪涛, 雷耀   

  1. 华北电力大学(保定) 计算机系, 河北 保定 071003; 河北省能源电力知识计算重点实验室, 河北 保定 071003
  • 收稿日期:2023-07-12 出版日期:2024-07-26 发布日期:2024-07-26
  • 通讯作者: 徐伟峰 E-mail:weifengxu@163.com

Wheat Ear Detection Algorithm Based on Improved YOLOv7

CHEN Sen, XU Weifeng, WANG Hongtao, LEI Yao   

  1. Department of Computer, North China Electric Power University (Baoding), Baoding 071003, Hebei Province, China; 
    Key Laboratory of Energy and Power Knowledge Computing of Hebei Province, Baoding 071003, Hebei Province, China
  • Received:2023-07-12 Online:2024-07-26 Published:2024-07-26

摘要: 针对麦穗数据集中存在的检测目标密集、 遮挡、 各地区形态不一致现象引起的漏检、 模型泛化能力弱等问题, 提出一种基于改进YOLOv7的麦穗检测算法. 首先, 在YOLOv7网络的骨干特征提取网络引入混合注意力机制加强对位置特征的提取, 缓解检测目标密集导致的漏检问题; 其次, 在骨干特征提取网络引入能结合不同尺寸的可切换空洞卷积(switchable atrous convolution, SAC), 通过增大感受野实现提取不同尺度的特征信息, 可有效改善因遮挡现象引起的漏检问题; 最后, 在特征融合部分引入增量学习模块(example vector correction, EVC), 提高模型的鲁棒性和泛化能力. 实验结果表明, 改进后的麦穗识别算法在全球小麦麦穗数据集的平均目标检测精度与原YOLOv7相比提高了2.11个百分点.

关键词: 小麦麦穗检测, 混合注意力, 增量学习, 空洞卷积

Abstract: Aiming at the problems of dense detection targets, occlusion, missed detection caused by inconsistent morphology in various regions and weak generalization ability of the model in the wheat ear dataset, we proposed a wheat ear detection algorithm based on improved YOLOv7. Firstly, we introducd a mixed attention mechanism into the backbone feature extraction network of YOLOv7 network to strengthen the extraction of location features and alleviate the missed detection problem caused by dense detection targets. Secondly, switchable atrous convolution (SAC) which could combine different sizes was introduced into the backbone feature extraction network, and the feature information of different scales was extracted by increasing the receptive field, which could effectively improve the missed detection problem caused by occlusion. Finally, an incremental learning module example vector correction (EVC) was introduced into the feature fusion part to improve the robustness and generalization ability of the model. The experimental results show that the average target detection accuracy of the improved wheat ear recognition algorithm in the global wheat ear dataset is 2.11 percentage points  higher than that of the original YOLOv7.

Key words: wheat ear detection, mixed attention, incremental learning, atrous convolution

中图分类号: 

  • TP391