吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (5): 1366-1378.

• • 上一篇    下一篇

多头注意力结合时间卷积的情绪识别方法

李柯, 刘云清, 李棋, 颜飞, 张琼   

  1. 长春理工大学 电子信息工程学院, 长春 130022
  • 收稿日期:2024-05-16 出版日期:2025-09-26 发布日期:2025-09-26
  • 通讯作者: 刘云清 E-mail:234577142@qq.com

Emotion Recognition Method  Based on Multi-head Attention Combined with Temporal Convolution

LI Ke, LIU Yunqing, LI Qi, YAN Fei, ZHANG Qiong   

  1. College of Electronic Information, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2024-05-16 Online:2025-09-26 Published:2025-09-26

摘要: 针对情绪产生过程中脑电信号的通道和时间片段中蕴含丰富的情绪信息, 并且不同的时间片段在情绪识别中的重要性不同, 如何捕获关键特征、 突出关键时间片段信息的难题, 提出一种脑电多维度特征情绪识别方法. 该方法充分利用生理信号的频率、 空间、 时间特征和注意力信息, 通过构建四维特征矩阵结合深度可分离网络, 内嵌卷积滑动窗口, 自适应提取脑电信号的空间-频率特征. 同时, 将多头注意力机制集成到时序卷积神经网络中, 突出重要时间序列信息, 实现情绪识别. 该方法在数据集DEAP上唤醒和效价的准确率分别达97.49%,97.36%, 在数据集SEED上的准确率达96.60%, 较主流方法约提升了3%, 实验结果验证了模型在生理信号情绪识别中的优越性.

关键词: 情绪识别, 脑电信号, 时序卷积网络, 多头注意力机制

Abstract: The channels and time segments of electroencephalogram (EEG) signals in the process of emotion generation contained rich emotional information, and different time segments held varying importance in emotion recognition. The challenge was how to capture key features and highlight key time segment information, we proposed a  multi-|dimensional feature  emotion recognition method based on EEG. This method fully utilized  frequency, spatial,  temporal characteristics, and attention information of physiological signals. By constructing a four-dimensional feature matrix combined with a depthwise separable network and embedding a convolutional sliding window to adaptively extract the spatial-frequency features of EEG signals. Meanwhile, a multi-head attention mechanism was integrated into the temporal convolutional neural network to highlight  important time series information and achieve emotion recognition. The accuracy of wake-up and potency of the proposed method on the DEAP dataset is 97.49% and 97.36%, respectively, and the accuracy of the method on the SEED dataset is 96.60%, which is about 3% higher than that of the mainstream method. The experimental results verify the superiority of the model in physiological signal emotion recognition.

Key words: emotion recognition, electroencephalogram signal, temporal convolutional network, multi-head attention mechanism

中图分类号: 

  •