吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (5): 1379-1386.

• • 上一篇    下一篇

基于改进北方苍鹰优化算法的时间卷积网络及其应用

王丽敏1, 赵侠1, 王丝雨1, 郭枝威1, 高铭晗2   

  1. 1. 广东财经大学 信息学院, 广州 510320; 2. 暨南大学 信息科学技术学院, 广州 510632
  • 收稿日期:2025-01-03 出版日期:2025-09-26 发布日期:2025-09-26
  • 通讯作者: 王丽敏 E-mail:202111016@gdufe.edu.cn

Temporal Convolutional Network Based on  Improved Northern Goshawk Optimization Algorithm and Its Applications

WANG Limin1, ZHAO Xia1, WANG Siyu1, GUO Zhiwei1, GAO Minghan2   

  1. 1. Collge of Information Science, Guangdong University of Finance and Economics, Guangzhou 510320, China;
    2. College of Information Science and Technology, Jinan University, Guangzhou 510632, China
  • Received:2025-01-03 Online:2025-09-26 Published:2025-09-26

摘要: 针对时间卷积网络存在的超参数选择困难及预测结果波动性较大的问题, 提出一种基于改进北方苍鹰优化算法的时间卷积网络模型. 首先, 提出一种基于混合策略改进的北方苍鹰优化算法, 通过融合Sine混沌映射初始化种群、 引入非线性惯性权重调整策略以及结合Lévy飞行机制, 增强算法的全局探索与局部开发能力. 其次, 将时间卷积网络的预测误差作为优化目标, 利用改进的北方苍鹰优化算法自动搜索其最优超参数组合, 构建时序预测模型. 在电力负荷预测任务中的实验结果表明, 该预测模型相较于其他改进时间卷积网络, 在预测精度和结果稳定性方面均有显著优势, 为解决时间卷积网络超参数选择问题提供了一种高效、 鲁棒的自动化优化方法, 提升了时间卷积网络模型在复杂时间序列预测任务中的精度和可靠性, 有实际应用价值.

关键词: 北方苍鹰优化算法, 时间卷积网络, 电力负荷预测, 超参数选择

Abstract: Aiming at  the problems of difficult hyperparameter selection and high volatility of prediction results in the temporal convolutional network, we proposed a temporal convolutional network model based on an improved northern goshawk optimization algorithm. Firstly, we proposed an improved northern goshawk optimization algorithm based on a hybrid strategy, which enhanced global exploration and local exploitation capabilities of the algorithm by integrating Sine chaotic mapping for population initialization, 
introducing a nonlinear inertia weight adjustment strategy, and combining with  the Lévy flight mechanism. Secondly, we took  the prediction error of the temporal convolutional network as the optimization objective, and used the improved northern goshawk optimization algorithm to automatically search for its optimal hyperparameter combination for constructing a time series 
prediction model. Experimental results on the power load forecasting task show that the proposed prediction model has significant advantages in prediction accuracy and result stability compared to other improved temporal convolutional network models. It provides an efficient and robust automated optimization method for solving the hyperparameter selection problem of temporal convolutional networks, improves the accuracy and reliability of temporal convolutional network models in complex time series prediction tasks, and has practical application value.

Key words: northern goshawk optimization algorithm, temporal convolutional network, power load forecasting, hyperparameter selection

中图分类号: 

  • TP391