吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (2): 203-212.

• •    下一篇

空地协同移动边缘计算卸载策略优化研究

张光华, 单蜜, 万恩晗   

  1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318
  • 收稿日期:2024-03-06 出版日期:2025-04-08 发布日期:2025-04-09
  • 作者简介:张光华(1979— ), 男, 郑州人, 东北石油大学副教授, 硕士生导师, 主要从事基于新一代通信体制的信号处理、 室内外移动定位、 卫星导航等研究, (Tel)86-15945929299(E-mail)dqzgh@ nepu. edu. cn。
  • 基金资助:
    国家自然科学基金资助项目(62271447)

Research on Unloading Strategy Optimization of Air-Ground Cooperative Moving Edge Computing

ZHANG Guanghua, SHAN Mi, WAN Enhan   

  1. School of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China
  • Received:2024-03-06 Online:2025-04-08 Published:2025-04-09

摘要: 针对传统移动边缘计算系统中的计算用户存在由于密集障碍物遮挡、地形结构等导致的通信信道中断以及未充分利用系统空闲资源, 难以完成低延迟和低功耗的密集型计算任务问题, 建立了无人机辅助的终端直通协同移动边缘计算系统。该系统中, 计算用户通过建立地面直连链路将部分任务卸载给空闲用户, 空闲用户利用自身的计算资源辅助计算的同时将剩余计算任务卸载给配置移动边缘计算服务器的无人机进行计算。通过建立新系统的数学模型, 提出了一种基于深度确定性策略梯度算法的计算卸载策略。在满足无人机电量、用户移动范围等约束的前提下, 联合优化双卸载率和无人机的机动性, 使计算任务处理延时最小化。在模拟的连续状态空间环境中进行仿真测试, 结果表明, 提出的卸载计算策略优化方案能实现协同网络内资源的高效利用, 与其他基线算法方案相比, 能有效降低任务处理时延。

关键词: 无人机, 移动边缘计算, 设备到设备, 深度强化学习, 计算卸载, 延时最小化

Abstract: In traditional mobile edge computing systems, users face issues such as communication channel interruptions caused by dense obstacles and terrain structures, and under-utilization of idle system resources.These issues make it challenging to complete intensive computing tasks with low delay and power consumption.To address this, a UAV(Unmanned Aerial Vehicle)-assisted terminal pass-through collaborative mobile edge computing system is established. In this system, the computing user offloads part of the task to the idle user by establishing a direct connection link on the ground. The idle user uses their computing resources to assist with the calculation while offloading the remaining tasks to the UAV configured with a mobile edge computing server.A mathematical model of this new system is established, and a computational offloading strategy based on the deep deterministic policy gradient algorithm is proposed. This strategy optimizes the dual offloading rate and the maneuverability of the UAV to minimize the processing delay of computing tasks, under the constraints of UAV power and user movement range. Simulation tests in a simulated continuous state space environment show that the proposed offloading computing strategy optimization scheme can efficiently use resources in the collaborative network and effectively reduce task processing delay compared to other baseline algorithms.

Key words: unmanned aerial vehicle(UAV), mobile edge computing, device-to-device communication(D2D), deep reinforcement learning, computation offloading, minimization of delay

中图分类号: 

  • TP301. 6