吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (2): 317-326.

• • 上一篇    下一篇

引入激活扩散的贝叶斯网络分类器

董 飒a,b, 刘 杰a,b, 刘大有a,b, 李婷婷a,b, 徐海啸a, 吴 旗a, 欧阳若川c   

  1. 吉林大学 a. 计算机科学与技术学院; b. 符号计算与知识工程教育部重点实验室; c. 党委教师工作部, 长春 130012
  • 收稿日期:2024-04-06 出版日期:2025-04-08 发布日期:2025-04-10
  • 通讯作者: 欧阳若川(1985— ), 男, 长春人, 吉林大学助理研究员, 主要从事信息化办公, 教师思想政治工作和师德师风评价研究, (Tel)86-431-85168569(E-mail)oyrc@ jlu. edu. cn。 E-mail:oyrc@ jlu. edu. cn。
  • 作者简介:董飒(1985— ), 女, 辽宁辽阳人, 吉林大学高级工程师, 主要从事数据挖掘、 高性能计算和实验管理研究, (Tel)86-431-85155256(E-mail)dongsa7701@ 163. com;
  • 基金资助:
    国家自然科学基金资助项目(61502198)

Network Bayes Classifier with Activation Spreading

DONG Saa,b, LIU Jiea,b, LIU Dayoua,b, LI Tingtinga,b, XU Haixiaoa, WU Qia, OUYANG Ruochuanc   

  1. a. School of Computer Science and Technology; b. Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education;c. Faculty Work Department of Party Committee, Jilin University, Changchun 130012, China
  • Received:2024-04-06 Online:2025-04-08 Published:2025-04-10

摘要: 针对网络数据分类的关系分类器都基于同质性假设, 而基于一阶马尔可夫假设的简化处理存在一定局限性的问题, 在贝叶斯网络分类器中, 引入局部图排序激活扩散方法替代原始的直接邻域获取方法。通过设置初始能量值和最小能量阈值, 适当扩大分类时待分类节点的邻域范围,从而提高了节点的同质性。结合松弛标注的协作推理方法, 引入激活扩散的贝叶斯网络分类器 ASNBC(Activation Spreading Network Bayes Classifier)在一定程度上提高了网络数据的分类精度。与4 个网络分类器的对比实验结果表明, 该方法在6 个网络数据集上的分类精度都有不同程度的提高。

关键词: 人工智能, 网络数据分类, 激活扩散, 贝叶斯网络分类器, 协作推理

Abstract: For the classification of networked data, most relational network classifiers are based on the homophily hypothesis, and the simplified processing based on the first-order Markov assumption has certain limitations. The local graph ranking algorithm ( activation spreading) is introduced into the network Bayes classifier instead of the original direct neighborhood acquisition method. The neighborhood range of nodes to be classified is appropriately expanded by setting the initial energy and the minimum energy threshold, increasing the homophily of nodes. Combined to the collective inference method of relaxation labeling, the classification
accuracy of network data is improved to a certain extent. Compared to 4 network classifiers, the experimental results show that the classification performance of the proposed method on 6 networked datasets is improved in different degrees.

Key words: artificial intelligence, classification in networked data, activation spreading, network Bayes classifier, collective inference

中图分类号: 

  • TP301