吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (2): 355-367.

• • 上一篇    下一篇

基于双属性并行融合网络的断层智能识别方法

曾丽丽, 牛艺晓, 任伟建, 刘小双, 代利民, 魏志远   

  1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318
  • 收稿日期:2023-12-02 出版日期:2025-04-08 发布日期:2025-04-10
  • 通讯作者: 牛艺晓(1999— ), 女, 山东临沂人, 东北石油大学硕士研究生, 主要从事油气藏数据挖掘研究, (Tel)86-15563377658(E-mail)2196114827@ qq. com。 E-mail:2196114827@ qq. com。
  • 作者简介:曾丽丽(1980— ), 女, 辽宁朝阳人, 东北石油大学副教授, 博士, 主要从事跨领域数据挖掘研究, (Tel) 86-13133515523(E-mail)zll@ nepu. edu. cn
  • 基金资助:
    河北省自然科学基金资助项目(D2022107001)

Fault Intelligent Identification Method Based on Parallel Fusion Network with Dual Attributes

ZENG Lili, NIU Yixiao, REN Weijian, LIU Xiaoshuang, DAI Limin, WEI Zhiyuan   

  1. School of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China
  • Received:2023-12-02 Online:2025-04-08 Published:2025-04-10

摘要: 针对目前深度学习方法研究多依赖于从地震振幅等单一属性中提取断层特征, 存在断层连续性差、 断层漏检等问题, 提出了一种并行属性输入的断层智能识别方法。 该方法采用多层次融合策略构建了双属性并行融合网络(PE-Net: Parallel Elements Network)。 首先, 将蚂蚁体和振幅属性分别输入蚂蚁体和振幅特征提取网络, 利用属性密集特征模块 AIFM(Attribute Intensive Feature Module)捕捉两个路径不同角度的断层特征; 其次,利用两种属性特征模块 ANT(Ant Body Attribute Feature Extraction Module) 和 AMP(Amplitude Attribute Feature Extraction Module)对各分支的输出进行跨层特征整合, 挖掘多尺度信息并缓解尺度变化; 最后, 采用特征融合模块(FFM: Feature Fusion Module)将两条并行支路的通道整合, 减少单一属性的局限性。 合成数据结果表明,PE-Net 模型的准确率达到 97. 95% , 相较于 U-Net 模型, 精度提高 1. 33% 。 Kerry3D 的断层识别结果以及消融实验表明, 该方法能获取更多的上下文断层特征信息, 减少断层漏检和误检情况, 从而有效提高复杂断层识别的准确性, 增强小断层的识别效果。

关键词: 断层识别, 卷积神经网络, 特征提取, 特征融合

Abstract: Deep learning methods have improved the efficiency and accuracy of fault identification, but current research often relies on extracting fault features from single attributes such as seismic amplitude, which leads to issues like poor fault continuity and missed detections. These problems limit the exploration and development of oil and gas reservoirs in complex areas. An intelligent fault identification method based on deep learning technology is proposed, which adopts a multi-level fusion strategy to construct a dual-attribute parallel fusion network PE-Net(Parallel Elements Network). Firstly, the ant body attributes and amplitude attributes are input
into the ant body feature extraction network and the amplitude feature extraction network respectively, capturing the fault features of different angles from both paths using the AIFM ( Attribute Intensive Feature Module). Secondly, two attribute feature modules are used to integrate cross-layer features of the output of each branch, mining multi-scale information and mitigating scale changes. Finally, the FFM(Feature Fusion Module) is used to integrate the two parallel branches, reducing the limitation of a single attribute. Synthetic data experiments demonstrate that the PE-Net model achieves an accuracy of 97. 95% , with a 1. 33% improvement compared to the U-Net model. The fault identification results on the Kerry3D dataset and ablation experiments confirm that the proposed method is capable of capturing more contextual fault features, reducing missed and false detections,thereby improving the accuracy of complex fault identification and enhancing the detection of small faults.

Key words: fault identification, convolutional neural network, feature extraction, feature fusion

中图分类号: 

  • TP391