吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (2): 422-431.

• • 上一篇    下一篇

人工智能在分子诊断人才培养中的应用及发展趋势综述

何佳雪, 胡欣彤, 刘 勇, 周 柏, 陈立国, 刘思文, 姜艳芳   

  1. 吉林大学第一医院 基因诊断中心, 长春 130021
  • 收稿日期:2024-12-10 出版日期:2025-04-08 发布日期:2025-04-10
  • 通讯作者: 姜艳芳(1971— ), 女, 黑龙江齐齐哈尔人, 吉林大学第一医院主任医师, 教授,主要从事分子诊断精准医学研究, (Tel)86-431-81879181(E-mail)yanfangjiang@ jlu. edu. cn。 E-mail:yanfangjiang@ jlu. edu. cn。
  • 作者简介:何佳雪(1984— ), 女, 长春人, 吉林大学第一医院副主任技师, 主要从事分子诊断学研究, ( Tel) 86-431-81879182(E-mail)he_jx@ jlu. edu. cn
  • 基金资助:
    吉林大学研究生教育教学改革研究基金资助项目(2022JGY018); 吉林大学第一医院研究生思想政治教育创新研究课题基金资助项目(yjs2023009; yjs2021025); 吉林省专业学位研究生教学案例建设基金资助项目(22ALK025)

Review of Application and Development Trends of Artificial Intelligence in Training Molecular Diagnostics Professionals

HE Jiaxue, HU Xintong, LIU Yong, ZHOU Bai, CHEN Liguo, LIU Siwen, JIANG Yanfang   

  1. Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun 130021, China
  • Received:2024-12-10 Online:2025-04-08 Published:2025-04-10

摘要: 为解决当前分子诊断人才培养中存在的效率和质量问题, 探讨了人工智能(AI: Artificial Intelligence)技术在分子诊断人才培养中的应用现状及未来发展趋势。其涵盖了 AI 技术在分子诊断中的应用现状、优势与挑战, 重点分析了 AI 如何通过自动化实验流程、精准数据分析和跨学科知识整合提升人才培养效率和质量。同时, 总结了国内外高校在 AI 与分子诊断人才培养中的实践经验, 并展望了其未来发展趋势, 包括虚拟现实与增强现实技术的融合、智能诊断系统的精准化、个性化学习平台的智能化等。虽然 AI 技术在分子诊断人才培养中展现出巨大潜力, 能显著提升人才的综合竞争力, 推动分子诊断技术的进一步发展, 为精准医疗提供强有力的人才支持。然而, AI 技术的应用仍面临跨学科知识整合、数据质量、伦理隐私等多重挑战, 需通过教育机构、行业和政府的共同努力加以解决。

关键词: 人工智能, 分子诊断, 人才培养, 跨学科融合

Abstract: To address the efficiency and quality issues in current molecular diagnosis talent cultivation, the application status and future development trends of AI(Artificial Intelligence) technology in molecular diagnosis talent cultivation is explored. The research content covers the current application of AI technology in molecular diagnostics, its advantages and challenges, and focuses on analyzing how AI can enhance the efficiency and quality of talent cultivation through automated experimental processes, precise data analysis, and
interdisciplinary knowledge integration. The study summarizes practical experiences from domestic and international universities in integrating AI with molecular diagnostic talent cultivation and outlines future development trends, including the integration of VR ( Virtual Reality ) and AR ( Augmented Reality )technologies, the precision of intelligent diagnostic systems, and the intelligence of personalized learning platforms. The conclusion of the study indicates that AI technology holds great potential in the cultivation of
molecular diagnostic talents, significantly enhancing their comprehensive competitiveness and promoting the further development of molecular diagnostic technologies to provide robust talent support for precision medicine. However, the application of AI technology still faces multiple challenges, including the integration of interdisciplinary knowledge, data quality, and ethical and privacy issues, which need to be addressed through the joint efforts of educational institutions, industries, and governments.

Key words: artificial intelligence, molecular diagnosis, talent cultivation, interdisciplinary integration

中图分类号: 

  • TP399