吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (4): 913-924.

• • 上一篇    下一篇

 基于多交互特征融合的方面级情感分类方法 

邱晓莹a, 张华辉a, 徐 航b, 吴敏敏a   

  1. 莆田学院a. 新工科产业学院;b. 机电与信息工程学院,福建莆田351100
  • 收稿日期:2023-11-07 出版日期:2025-08-15 发布日期:2025-08-15
  • 通讯作者: 张华辉(1995— ), 男, 福建龙岩人, 莆田学院助教, 硕士,主要从事自然语言处理应用研究,(Tel)86-15260132930(E-mail)zhanghuahui@ptu. edu. cn
  • 作者简介:邱晓莹(2001— ), 女, 福建漳州人, 莆田学院本科生,主要从事自然语言处理应用研究, (Tel)86-18159246750(E-mail) 1990369234@ qq. com; 徐航(1990— ), 男, 福建莆田人, 莆田学院副教授, 硕士生导师, 主要从事智能优化算法及其应用研究,(Tel)86-18054817939(Email)xuhang@ ptu. edu. cn
  • 基金资助:
    :国家自然科学基金资助项目(62103209); 福建省自然科学基金资助项目(2023J011016); 福建省中青年教师教育科研基金资助项目(JAT220298) 

Aspect-Level Sentiment Classification Method Based on Multi-Interaction Feature Fusion

QIU Xiaoyinga, ZHANG Huahuia, XU Hangb, WU Minmina   

  1. a. College of New Engineering Industry; b. College of Mechatronics and Information Engineering, Putian University, Putian 351100, China
  • Received:2023-11-07 Online:2025-08-15 Published:2025-08-15

摘要: 针对现有方面级情感分类模型存在方面词与上下文交互不充分、分类精度低的问题, 提出一种基于多交互特征融合的方面级情感分类方法(ASMFF: Aspect-level Sentiment classification method based on Multi- interaction Feature Fusion)。首先, 将上下文和方面词分别进行特殊标记, 输入BERT(Bidirectional Encoder Representations from Transformers)编码层进行文本特征向量提取。其次, 将文本特征向量输入AOA(Attention Over Attention) IAN(Interactive Attention Networks)网络提取交互注意力特征向量 最后, 将得到的两种交互 特征向量进行融合学习,通过交叉熵损失函数进行概率计算、损失回传和参数更新。在Laptop Restaurant Twitter 3个公开数据集上的实验结果表明, ASMFF模型的分类准确率分别为80.25%84.38%75.29%, 相比 基线模型有显著提升。

关键词: 方面级情感分类, 自然语言处理, 交互注意力网络, 多交互特征融合

Abstract:  Aspect-level sentiment analysis is a prominent research task in the field of natural language processing. Aiming to analyze the sentiment tendencies of different aspects of texts, to address the issues of insufficient interaction between aspect words and context, and to deal with low classification accuracy of existing aspect-level sentiment classification models, an ASMFF(Aspect-level Sentiment classification method is proposed based on Multi-interaction Feature Fusion). Firstly, the context and aspect words are distinctly labeled and fed into the BERT(Bidirectional Encoder Representations from Transformers) coding layer for text feature vector extraction. Secondly, the text feature vectors are fed into AOA (Attention Over Attention) and IAN (Interactive Attention Networks) networks to extract the interactive attention feature vectors. Finally, the two interactive feature vectors obtained are fused and learned, and probability calculation, loss back propagation, and parameter updating are carried out using the cross-entropy loss function. Experimental results on three publicly available datasets, Laptop, Restaurant, and Twitter, show that the classification accuracy of the ASMFF model is 80. 25%,84.38%, and 75.29%, respectively, which is a significant improvement over the baseline model. 

Key words: aspect-level sentiment classification, natural language processing, interactive attention networks, multi-interaction feature fusion

中图分类号: 

  • TP391