吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (6): 1404-1410.

• • 上一篇    下一篇

机器学习模型预测冠状动脉血运重建需求

陈 雪, 陈 新, 兰文婧, 王艺潼, 纪铁凤   

  1. 吉林大学第一医院 放射线科, 长春 130021
  • 收稿日期:2024-05-17 出版日期:2025-12-08 发布日期:2025-12-08
  • 通讯作者: 纪铁凤(1978— ), 女, 长春人, 吉林大学第一医院主任医师, 副教授, 硕士生导师,主要从事冠状动脉疾病研究, (Tel)86-13804332730(E-mail)pygcnm@ jlu. edu. cn E-mail:pygcnm@ jlu. edu. cn
  • 作者简介:陈雪(1996— ), 女, 长春人, 吉林大学硕士研究生, 主要从事冠状动脉疾病研究, ( Tel) 86-18844580650 ( E-mail)1411723468@ qq. com
  • 基金资助:
    吉林省医疗卫生人才专项基金资助项目(JLSWSRCZX2023-83)

Machine Learning Model for Predicting Coronary Artery Revascularization Needs

CHEN Xue, CHEN Xin, LAN Wenjing, WANG Yitong, JI Tiefeng   

  1. Department of Radiology, The First Hospital of Jilin University, Changchun 130021, China
  • Received:2024-05-17 Online:2025-12-08 Published:2025-12-08

摘要:

为探究机器学习方法预测冠状动脉疾病(CAD: Coronary Artery Disease) 患者血运重建适应证的能力,比较极限梯度提升模型(XGBoost: Extreme Gradient Boosting) 结合沙普利可加解释性方法( SHAP: SHapley Additive exPlanations)与传统模型在血运重建筛选中的效能。回顾分析 2020 年 1 月-2025 年 5 月在吉林大学第一医院纳入的 466 例 CAD 或疑似 CAD 患者, 收集患者影像学指标。XGBoost 模型通过整合多维度指标构建,采用 5 折交叉验证优化, 结合 SHAP 量化特征贡献度。结果显示, XGBoost 模型曲线下面积(AUC: Area UnderCurve)达 0. 899(95% CI: 0. 871 ~ 0. 927), 显著高于传统逻辑回归模型(AUC = 0. 812)、 冠状动脉计算机断层扫描血管造影参数逻辑回归模型(AUC= 0. 786), SHAP 分析明确表示最小管腔面积和最狭窄程度为最关键预测因子。XGBoost 模型结合 SHAP 的方法可有效辅助 CAD 患者血运重建适应证筛选, 且预测效能与可解释性均优于传统模型, 为临床精准干预提供可靠支持。

关键词:

Abstract:

To explore the ability of machine learning methods to predict revascularization eligibility in patients with CAD(Coronary Artery Disease) and compare the efficacy of the XGBoost (Extreme Gradient Boosting) model combined with the SHAP ( Shapley Additive exPlanations) interpretability method against traditional models in revascularization screening. A retrospective analysis was conducted on 466 patients with confirmed or suspected CAD who were admitted to the First Hospital of Jilin University from January 2020 to May 2025, and the patients' imaging indicators were collected. The XGBoost model was constructed by integrating multi-dimensional indicators,optimized using 5-fold cross-validation, and combined with the SHAP method to quantify feature contribution. The results showed that the AUC(Area Under the Curve) of the XGBoost model reached 0. 899 (95% CI: 0. 871-0. 927), which was significantly higher than that of the traditional logistic regression model (AUC = 0. 812), the logistic model with full CCTA parameters (AUC = 0. 786). SHAP analysis identified minimum luminal area and maximum degree as the most critical predictors. The combination of XGBoost and SHAP can effectively assist in screening revascularization eligibility for CAD patients, with better predictive performance and interpretability than traditional models, providing reliable support for precise clinical intervention.

Key words:

中图分类号: 

  • TP319