[1] Gottfried LF, Dean DA.Extracellular and intracellular barriers to non-viral gene transfer[A].Wei M,Good D.Novel gene therapy approaches[M].Croatia:INTECH,2013:75-88. [2] Mintzer MA, Simanek EE. Nonviral vectors for gene delivery[J]. Chem Rev, 2009,109(2):259-302. [3] Scott CC, Vacca F,Gruenberg J. Endosome maturation, transport and functions[J].Semin Cell Dev Biol,2014, 31:2-10. [4] Jones CH, Chen CK, Ravikrishnan A, et al. Overcoming nonviral gene delivery barriers:perspective and future[J]. Mol Pharm, 2013, 10(11):4082-4098. [5] Mindell JA. Lysosomal acidification mechanisms[J].Annu Rev Physiol, 2012, 74:69-86. [6] Graves AR, Curran PK, Smith CL, et al. The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes[J].Nature, 2008, 453(7196):788-792. [7] Guo S, Huang L. Nanoparticles escaping RES and endosome:challenges for siRNA delivery for cancer therapy[J].J Nanomater, 2011, 2011:11. [8] Ferrer-Miralles N, Vázquez E, Villaverde A. Membrane-active peptides for non-viral gene therapy:making the safest easier[J]. Trends Biotechnol, 2008, 26(5):267-275. [9] Martens TF, Remaut K, Demeester J, et al. Intracellular delivery of nanomaterials:how to catch endosomal escape in the act[J]. Nano Today, 2014, 9(3):344-364. [10] Chang DK, Cheng SF, Kantchev EA, et al. Membrane interaction and structure of the transmembrane domain of influenza hemagglutinin and its fusion peptide complex[J].BMC Biol, 2008, 6(1):2. [11] Mandal M, Lee KD. Listeriolysin O-liposome-mediated cytosolic delivery of macromolecule antigen in vivo:enhancement of antigen-specific cytotoxic T lymphocyte frequency, activity, and tumor protection[J]. Biochim Biophys Acta, 2002, 1563(1/2):7-17. [12] Varkouhi AK, Scholte M, Storm G, et al. Endosomal escape pathways for delivery of biologicals[J]. J Control Release, 2011, 151(3):220-228. [13] Selbo PK, Weyergang A, Høgset A, et al. Photochemical internalization provides time-and space-controlled endolysosomal escape of therapeutic molecules[J].J Control Release, 2010, 148(1):2-12. [14] De Bruin KG, Fella C, Ogris M, et al. Dynamics of photoinducedendosomal release of polyplexes[J].J Control Release, 2008, 130(2):175-182. [15] Ohtsuki T, Miki S, Kobayashi S, et al.The molecular mechanism of photochemical internalization of cell penetrating peptide-cargo-photosensitizer conjugates[J].Sci Rep, 2015, 5:18577. [16] Selbo PK, Bostad M, Olsen CE, et al. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics[J]. Photoch Photobiol Sci, 2015, 14(8):1433-1450. [17] Shahbazi MA, Almeida PV, Mäkilä EM, et al. Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering[J]. Biomaterials, 2014, 35(26):7488-7500. [18] Gao Y, Li Y, Li Y, et al. PSMA-mediated endosome escape-accelerating polymeric micelles for targeted therapy of prostate cancer and the real time tracing of their intracellular trafficking[J]. Nanoscale, 2015, 7(2):597-612. [19] Yuan Y, Zhang CJ, Liu B. A Photoactivatable AIE Polymer for Light-controlled gene delivery:concurrent endo/lysosomal escape and DNA unpacking[J].Angew Chem Int Ed Engl, 2015, 54(39):11419-11423. [20] Li W, Nicol F, Szoka FC Jr. GALA:a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery[J]. Adv Drug Deliv Rev, 2004, 56(7):967-985. [21] Wan Y, Moyle PM, Christie MP, et al. Nanosized, peptide-based multicomponent DNA delivery systems:optimization of endosome escape activity[J]. Nanomedicine, 2016, 11(8):907-919. [22] Kullberg M, Owens JL, Mann K. Listeriolysin O enhances cytoplasmic delivery by Her-2 targeting liposomes[J]. J Drug Target, 2010, 18(4):313-320. [23] Kim NH, Provoda C, Lee KD. Design and characterization of novel recombinant listeriolysin o-protamine fusion proteins for enhanced gene delivery[J].Mol Pharm, 2015, 12(2):342-350. [24] Walker WA, Tarannum M, Vivero-Escoto JL. Cellular endocytosis and trafficking of cholera toxin B-modified mesoporous silica nanoparticles[J].J Mater Chem B, 2016, 4(7):1254-1262. [25] Lee MT, Sun TL, Hung WC, et al. Process of inducing pores in membranes by melittin[J]. Pro Natl Acad Sci USA, 2013, 110(35):14243-14248. [26] Kim JS, Choi DK, Shin JY, et al. Endosomal acidic pH-induced conformational changes of a cytosol-penetrating antibody mediate endosomal escape[J]. J Control Release, 2016, 235:165-175. [27] Ahmad A, Ranjan S, Zhang W, et al. Novel endosomolytic peptides for enhancing gene delivery in nanoparticles[J]. Biochim Biophys Acta, 2015, 1848(2):544-553. [28] Gu W, Jia Z, Truong NP, et al. Polymer nanocarrier system for endosome escape and timed release of siRNA with complete gene silencing and cell death in cancer cells[J]. Biomacromolecules, 2013, 14(10):3386-3389. [29] Gujrati M, Malamas A, Shin T, et al. Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release[J].Mol Pharm, 2014, 11(8):2734-2744. [30] Li Y, Cheng Q, Jiang Q, et al. Enhanced endosomal/lysosomal escape by distearoylphosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA[J]. J Control Release, 2014, 176:104-114. |