[1] Novotny J, Foret F. Fluid manipulation on the micro-scale:Basics of fluid behavior in microfluidics[J]. J Sep Sci, 2017, 40(1):383-394. [2] Nge PN, Rogers CI, Woolley AT. Advances in microfluidic materials, functions, integration, and applications[J]. Chem Rev, 2013, 113(4):2550-2583. [3] Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research[J]. Nature, 2014, 507(7491):181-189. [4] Liu Z, Han X, Qin L. Recent progress of microfluidics in translational applications[J]. Adv Healthc Mater, 2016, 5(8):871-888. [5] Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy[J]. Nat Rev Genet, 2014, 15(8):541-555. [6] Stewart MP, Sharei A, Ding X, et al. In vitro and ex vivo strategies for intracellular delivery[J]. Nature, 2016, 538(7624):183-192. [7] Gurtovenko AA, Anwar J, Vattulainen I. Defect-mediated trafficking across cell membranes:insights from in silico modeling[J]. Chem Rev, 2010, 110(10):6077-6103. [8] Xu Z, Lu C, Riordon J, et al. Microfluidic manufacturing of polymeric nanoparticles:comparing flow control of multiscale structure in single-phase staggered herringbone and two-phase reactors[J]. Langmuir, 2016, 32(48):12781-12789. [9] Borle AB, Snowdowne KW. Measurement of intracellular free calcium in monkey kidney cells with aequorin[J]. Science, 1982, 217(4556):252-254. [10] Grady ME, Parrish E, Caporizzo MA, et al. Intracellular nanoparticle dynamics affected by cytoskeletal integrity[J]. Soft Matter, 2017, 13(9):1873-1880. [11] Naldini L. Ex vivo gene transfer and correction for cell-based therapies[J]. Nat Rev Genet, 2011, 12(5):301-315. [12] June CH, Riddell SR, Schumacher TN. Adoptive cellular therapy:a race to the finish line[J]. Sci Translat Med, 2015, 7(280):280-287. [13] Naldini L. Gene therapy returns to centre stage[J]. Nature, 2015, 526(7573):351-360. [14] Movahed S, Li D. Microfluidics cell electroporation[J]. Microfluidics Nanofluidics, 2011, 10(4):703-734. [15] Garcia PA, Ge Z, Moran JL, et al. Microfluidic screening of electric fields for electroporation[J]. Sci Rep, 2016, 6:21238. [16] Geng T, Zhan Y, Wang HY, et al. Flow-through electroporation based on constant voltage for large-volume transfection of cells[J]. J Controlled Release, 2010, 144(1):91-100. [17] Garcia PA, Ge Z, Kelley LE, et al. High efficiency hydrodynamic bacterial electrotransformation[J]. Lab Chip, 2017, 17(3):490-500. [18] Cui X, Dean D, Ruggeri ZM, et al. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells[J]. Biotechnol Bioeng, 2010, 106(6):963-969. [19] Meng L, Deng Z, Niu L, et al. A disposable microfluidic device for controlled drug release from thermal-sensitive liposomes by high intensity focused ultrasound[J]. Theranostics, 2015, 5(11):1203-1213. [20] Fox CB, Cao Y, Nemeth CL, et al. Fabrication of sealed nanostraw microdevices for oral drug delivery[J]. Acs Nano, 2016, 10(6):5873-5881. [21] Xu AM, Wang DS, Shieh P, et al. Direct intracellular delivery of cell-impermeable probes of protein glycosylation by using nanostraws[J]. Chembiochem, 2017, 18(7):623-628. [22] Xu AM, Kim SA, Wang DS, et al. Temporally resolved direct delivery of second messengers into cells using nanostraws[J]. Lab Chip, 2016, 16(13):2434-2439. [23] Mcneil PL. Incorporation of macromolecules into living cells[J]. Methods Cell Biol, 1989, 29:153-173. [24] Clarke MS, Mcneil PL. Syringe loading introduces macromolecules into living mammalian cell cytosol[J]. J Cell Sci, 1992, 102(Pt 3):533-541. [25] Sharei A, Zoldan J, Adamo A, et al. A vector-free microfluidic platform for intracellular delivery[J]. Proceed Nat Acad Sci USA, 2013, 110(6):2082-2087. [26] Saung MT, Sharei A, Adalsteinsson VA, et al. A size-selective intracellular delivery platform[J]. Small, 2016, 12(42):5873-5881. [27] LaPlaca MC, Lee VM, Thibault LE. An in vitro model of traumatic neuronal injury:loading rate-dependent changes in acute cytosolic calcium and lactate dehydrogenase release[J]. J Neurotrauma, 1997, 14(6):355-368. [28] Hallow DM, Seeger RA, Kamaev PP, et al. Shear-induced intracellular loading of cells with molecules by controlled microfluidics[J]. Biotechnol Bioeng, 2008, 99(4):846-854. [29] Marmottant P, Hilgenfeldt S. Controlled vesicle deformation and lysis by single oscillating bubbles[J]. Nature, 2003, 423(6936):153-156. [30] Fechheimer M, Boylan JF, Parker S, et al. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading[J]. Proc Nat Acad Sci USA, 1987, 84(23):8463-8467. [31] Liu Y, Yan J, Prausnitz MR. Can ultrasound enable efficient intracellular uptake of molecules? A retrospective literature review and analysis[J]. Ultrasound Med Biol, 2012, 38(5):876-888. [32] Ohl CD, Arora M, Ikink R, et al. Sonoporation from jetting cavitation bubbles[J]. Biophys J, 2006, 91(11):4285-4295. [33] Wu G, Mikhailovsky A, Khant HA, et al. Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells[J]. J Am Chem Soc, 2008, 130(26):8175-8177. |