吉林大学学报(医学版) ›› 2018, Vol. 44 ›› Issue (06): 1312-1316.doi: 10.13481/j.1671-587x.20180635
李波1, 唐思嘉1, 刘可可1, 刘璐瑶1, 张雯雯1, 董春玲2
收稿日期:
2017-10-18
出版日期:
2018-11-28
发布日期:
2018-11-28
通讯作者:
董春玲,主任医师,硕士研究生导师(Tel:0431-88796820,E-mail:cldong@jlu.edu.cn)
E-mail:cldong@jlu.edu.cn
作者简介:
李波(1977-),男,吉林省吉林市人,副教授,医学博士,主要从事口腔医学基础方面的研究。
基金资助:
Received:
2017-10-18
Online:
2018-11-28
Published:
2018-11-28
摘要: 急性肺损伤(ALI)是以肺弥散功能障碍为主要特征的临床危重急症,病情易加重发展为急性呼吸窘迫综合征。目前除机械通气以外,ALI缺乏有效的治疗方法,其病死率高达40%以上。姜黄素是一种从植物姜黄中提取的多酚类活性成分,有较高的生物活性,姜黄素对ALI有明显的治疗作用。本文针对由各种致病因素引起的ALI采用姜黄素治疗的效果和作用机制进行综合论述。
中图分类号:
李波, 唐思嘉, 刘可可, 刘璐瑶, 张雯雯, 董春玲. 姜黄素治疗急性肺损伤效果和机制的研究进展[J]. 吉林大学学报(医学版), 2018, 44(06): 1312-1316.
[1] Shakeri F, Boskabady MH. Anti-inflammatory, antioxidant, and immunomodulatory effects of curcumin in ovalbumin-sensitized rat[J]. Biofactors, 2017, 43(4):567-576. [2] Hu A, Huang JJ, Zhang JF, et al. Curcumin induces G2/M cell cycle arrest and apoptosis of head and neck squamous cell carcinoma in vitro and in vivo through ATM/Chk2/p53-dependent pathway[J]. Oncotarget, 2017, 8(31):50747-50760. [3] Xu X, Zhu Y. Curcumin inhibits human non-small cell lung cancer xenografts by targeting STAT3 pathway[J]. Am J Transl Res, 2017, 9(8):3633-3641. [4] Han S, Xu J, Guo X, et al. Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production[J]. Clin Exp Pharmacol Physiol, 2018,45(1):84-93. [5] Shrestha S, Zhu J, Wang Q, et al. Melatonin potentiates the antitumor effect of curcumin by inhibiting IKKbeta/NF-kappaB/COX-2 signaling pathway[J]. Int J Oncol, 2017,51(4):1249-1260. [6] Tyagi N, Kumari A, Dash D, et al. Protective effects of intranasal curcumin on paraquot induced acute lung injury (ALI) in mice[J]. Environ Toxicol Pharmacol, 2014, 38(3):913-921. [7] Tyagi N, Dash D, Singh R. Curcumin inhibits paraquat induced lung inflammation and fibrosis by extracellular matrix modifications in mouse model[J]. Inflammopharmacology, 2016, 24(6):335-345. [8] Lu Q, Mundy M, Chambers E, et al. Alda-1 protects against acrolein-induced acute lung injury and endothelial barrier dysfunction[J]. Am J Respir Cell Mol Biol, 2017,57(6):662-673. [9] Zhang Q, Wu D, Yang Y, et al. Dexmedetomidine alleviates hyperoxia-induced acute lung injury via inhibiting NLRP3 inflammasome activation[J]. Cell Physiol Biochem, 2017, 42(5):1907-1919. [10] Lax S, Rayes J, Wichaiyo S, et al. Platelet CLEC-2 protects against lung injury via effects of its ligand podoplanin on inflammatory alveolar macrophages in the mouse[J]. Am J Physiol Lung Cell Mol Physiol, 2017,313(6):L1016-L1029. [11] Gong Y, Lan H, Yu Z, et al. Blockage of glycolysis by targeting PFKFB3 alleviates sepsis-related acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells[J]. Biochem Biophys Commun, 2017, 491(2):522-529. [12] Huang H, Wang Y. The protective effect of cinnamaldehyde on lipopolysaccharide induced acute lung injury in mice[J]. Cell Mol Biol (Noisy-le-grand), 2017, 63(8):58-63. [13] Máca J, Jor O, Holub M, et al. Past and present ARDS mortality rates:a systematic review[J]. Respir Care, 2017, 62(1):113-122. [14] Balakrishnan A, Drobatz KJ, Silverstein DC. Retrospective evaluation of the prevalence, risk factors, management, outcome, and necropsy findings of acute lung injury and acute respiratory distress syndrome in dogs and cats:29 cases (2011-2013)[J]. J Vet Emerg Crit Care (San Antonio), 2017,27(6):662-673. [15] Tan Z, Wang H, Sun J, et al. Effects of propofol pretreatment on lung morphology and heme oxygenase-1 expression in oleic acid-induced acute lung injury in rats[J]. Acta Cir Bras, 2018,33(3):250-258. [16] Frat JP, Coudroy R, Marjanovic N, et al. High-flow nasal oxygen therapy and noninvasive ventilation in the management of acute hypoxemic respiratory failure[J]. Ann Transl Med, 2017, 5(14):297. [17] Xu Z, Gu L, Bian Q, et al. Oxygenation, inflammatory response and lung injury during one lung ventilation in rabbits using inspired oxygen fraction of 0.6vs 1.0[J]. J Biomed Res, 2016, 31(1):56-64. [18] Nieman GF, Satalin J. Personalizing mechanical ventilation according to physiologic parameters to stabilize alveoli and minimize ventilator induced lung injury (VILI)[J]. Intensive Care Med Exp, 2017, 5(1):8. [19] Schmidt GA. Managing acute lung injury[J]. Clin Chest Med, 2016, 37(4):647-658. [20] Shishodia S, Sethi G, Aggarwal BB. Curcumin:getting back to the roots[J]. Ann N Y Acad Sci, 2005, 1056:206-217. [21] Zhu J, Sanidad KZ, Sukamtoh E, et al. Potential roles of chemical degradation in the biological activities of curcumin[J].Food Funct, 2017,8(3):907-914. [22] Francis AP, Devasena T, Ganapathy S, et al. Multi-walled carbon nanotube-induced inhalation toxicity:Recognizing nano bis-demethoxy curcumin analog as an ameliorating candidate[J]. Nanomedicine, 2018, 14(6):1809-1822. [23] Zhou G, Sun G, Zhou Y, et al. Transcriptomic analysis of human non-small lung cancer cells A549 treated by one synthetic curcumin derivative MHMD[J]. Cell Mol Biol (Noisy-le-grand), 2017, 63(9):35-39. [24] Zhang Y, Liang D, Dong L, et al. Anti-inflammatory effects of novel curcumin analogs in experimental acute lung injury[J]. Respir Res, 2015, 16:43. [25] Feng J, Xiao B, Chen W, et al. Synthesis and anti-inflammatory evaluation of novel C66 analogs for the treatment of LPS-induced acute lung injury[J]. Chem Biol Drug Des, 2015, 86(4):753-763. [26] Feng C, Xia Y, Zou P, et al. Curcumin analog L48H37 induces apoptosis through ROS-mediated endoplasmic reticulum stress and STAT3 pathways in human lung cancer cells[J]. Mol Carcinog, 2017, 56(7):1765-1777. [27] Shukla P, Dwivedi P, Gupta PK, et al. Optimization of novel tocopheryl acetate nanoemulsions for parenteral delivery of curcumin for therapeutic intervention of sepsis[J]. Expert Opin Drug Deliv, 2014, 11(11):1697-1712. [28] Jiang Y, Wong S, Chen F, et al. Influencing selectivity to cancer cells with mixed nanoparticles prepared from albumin-polymer conjugates and block copolymers[J]. Bioconjug Chem, 2017, 28(4):979-985. [29] Zupancic Š, Kocbek P, Zariwala MG, et al. Design and development of novel mitochondrial targeted nanocarriers, DQAsomes for curcumin inhalation[J]. Mol Pharm, 2014, 11(7):2334-2345. [30] Xiao X, Yang M, Sun D, et al. Curcumin protects against sepsis-induced acute lung injury in rats[J]. J Surg Res, 2012, 176(1):e31-e39. [31] Silva R, Carmo H, Vilas-Boas V, et al. Several transport systems contribute to the intestinal uptake of Paraquat, modulating its cytotoxic effects[J]. Toxicol Lett, 2015, 232(1):271-283. [32] Nguyen V, Malik DS, Howland MA. Methylene blue protects against paraquat-induced acute lung injury in rats[J]. Int Immunopharmacol, 2014, 20(2):358. [33] Gilani RA, Rafique M, Rehman A, et al. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas[J]. J Basic Microbiol, 2016, 56(2):105-119. [34] Uzun FG, Demir F, Kalender S, et al. Protective effect of catechin and quercetin on chlorpyrifos-induced lung toxicity in male rats[J]. Food Chem Toxicol, 2010, 48(6):1714-1720. [35] Hassani S, Sepand MR, Jafari A, et al. Protective effects of curcumin and vitamin E against chlorpyrifos-induced lung oxidative damage[J]. Hum Exp Toxicol, 2015, 34(6):668-676. [36] Wang Y, Shan X, Dai Y, et al. Curcumin analog L48H37 prevents lipopolysaccharide-induced TLR4 signaling pathway activation and sepsis via targeting MD2[J]. J Pharmacol Exp Ther, 2015, 353(3):539-550. [37] Miyashita T, Ahmed AK, Nakanuma S, et al. A three-phase approach for the early identification of acute lung injury induced by severe sepsis[J]. In Vivo, 2016, 30(4):341-349. [38] Schnoor M, García Ponce A, Vadillo E, et al. Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis[J]. Cell Mol Life Sci, 2017,74(11):1985-1997. [39] Kim J, Jeong SW, Quan H, et al. Effect of curcumin (Curcuma longa extract) on LPS-induced acute lung injury is mediated by the activation of AMPK[J]. J Anesth, 2016, 30(1):100-108. [40] Xu F, Diao R, Liu J, et al. Curcumin attenuates staphylococcus aureus-induced acute lung injury[J]. Clin Respir J, 2015, 9(1):87-97. [41] Xu F, Lin SH, Yang YZ, et al. The effect of curcumin on sepsis-induced acute lung injury in a rat model through the inhibition of the TGF-beta1/SMAD3 pathway[J]. Int Immunopharmacol, 2013, 16(1):1-6. [42] Kumari A, Tyagi N, Dash D, et al. Intranasal curcumin ameliorates lipopolysaccharide-induced acute lung injury in mice[J]. Inflammation, 2014, 38(3):1103-1112. [43] Fard N, Saffari A, Emami G, et al. Acute respiratory distress syndrome induction by pulmonary ischemia-reperfusion injury in large animal models[J]. J Surg Res, 2014, 189(2):274-284. [44] Wu NC, Wang JJ. Curcumin attenuates liver warm ischemia and reperfusion-induced combined restrictive and obstructive lung disease by reducing matrix metalloprotease 9 activity[J]. Transplant Proc, 2014, 46(4):1135-1138. [45] Fan Z, Yao J, Li Y, et al. Anti-inflammatory and antioxidant effects of curcumin on acute lung injury in a rodent model of intestinal ischemia reperfusion by inhibiting the pathway of NF-Kb[J]. Int J Clin Exp Pathol, 2015, 8(4):3451-3459. [46] Okudan N, Belviranli M, Gökbel H, et al. Protective effects of curcumin supplementation on intestinal ischemia reperfusion injury[J]. Phytomedicine, 2013, 20(10):844-848. [47] Aydin MS, Caliskan A, Kocarslan A, et al. Intraperitoneal curcumin decreased lung, renal and heart injury in abdominal aorta ischemia/reperfusion model in rat[J]. Int J Surg, 2014, 12(6):601-605. [48] Yeh JH, Yang YC, Wang JC, et al. Curcumin attenuates renal ischemia and reperfusion injury-induced restrictive respiratory insufficiency[J]. Transplant Proc, 2013, 45(10):3542-3545. [49] Oguz A, Kapan M, Onder A, et al. The effects of curcumin on the liver and remote organs after hepatic ischemia reperfusion injury formed with Pringle manoeuvre in rats[J]. Eur Rev Med Pharmacol Sci, 2013, 17(4):457-466. [50] Sakurai R, Villarreal P, Husain S, et al. Curcumin protects the developing lung against long-term hyperoxic injury[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 305(4):L301-L311. [51] Nehra S, Bhardwaj V, Bansal A, et al. Nanocurcumin accords protection against acute hypobaric hypoxia induced lung injury in rats[J]. J Physiol Biochem, 2016, 72(4):763-779. [52] Cho YJ, Yi CO, Jeon BT, et al. Curcumin attenuates radiation-induced inflammation and fibrosis in rat lungs[J]. Korean J Physiol Pharmacol, 2013, 17(4):267-274. [53] Garcia-Nino WR, Zatarain-Barron ZL, Hernandez-Pando R, et al. Oxidative stress markers and histological analysis in diverse organs from rats treated with a hepatotoxic dose of Cr(Ⅵ):effect of curcumin[J]. Biol Trace Elem Res, 2015, 167(1):130-145. [54] Zhang F, Yang F, Zhao H, et al. Curcumin alleviates lung injury in diabetic rats by inhibiting NF-kappaB pathway[J]. Clin Exp Pharmacol Physiol, 2015,42(9):956-963. [55] Dong ZW, Chen J, Ruan YC, et al. CFTR-regulated MAPK/NF-kappaB signaling in pulmonary inflammation in thermal inhalation injury[J]. Sci Rep, 2015, 5:15946-15958. |
[1] | 池明, 高玲, 吴巍巍, 张博儒, 王雷. 黄连素对脂多糖诱导的小鼠急性肺损伤和炎症的改善作用及其机制[J]. 吉林大学学报(医学版), 2018, 44(06): 1194-1199. |
[2] | 石旭, 余欣, 曲兴龙, 曹扬, 张广娟, 李长远. 低氧及其下游因子miRNA-145在脐带间充质干细胞向Ⅱ型肺泡上皮细胞分化中的作用[J]. 吉林大学学报(医学版), 2018, 44(05): 935-942. |
[3] | 王晓菲, 秦再生. 厄洛替尼对脂多糖诱导的巨噬细胞炎症反应和小鼠急性肺损伤的影响[J]. 吉林大学学报(医学版), 2016, 42(03): 457-461. |
[4] | 何婧, 戚迪, 王导新. 胰岛素通过mTORC2/SGK1途径上调肺泡上皮钠通道α亚基的作用机制[J]. 吉林大学学报(医学版), 2015, 41(04): 716-720. |
[5] | 魏洁, 李开济, 骆广玲, 魏静波, 李保卫, 何红伟, 甄永占. 姜黄素对实验性肝纤维化大鼠肝损伤的保护作用[J]. 吉林大学学报(医学版), 2015, 41(02): 225-229. |
[6] | 赵朝华,吴树强,苟兴春,米亚静,杨吉平,史利利,成娟娟. 姜黄素对脑缺血再灌注损伤大鼠脑组织中NO和S100β水平的影响[J]. 吉林大学学报(医学版), 2014, 40(05): 925-928. |
[7] | 刘笑玎,原铭贞,王司仪,刘相良,梁豪君,高歌,李波,董春玲. 水通道蛋白1、3、4和5与急性肺损伤关系的研究进展[J]. 吉林大学学报(医学版), 2014, 40(05): 1119-1122. |
[8] | 刘相良,原铭贞,刘笑玎,王司仪,梁豪君,高 歌,李 波,董春玲. 趋化因子及其受体在急性肺损伤中作用的研究进展[J]. 吉林大学学报(医学版), 2014, 40(04): 908-912. |
[9] | 原铭贞,高广媛,李波,董春玲,王司仪,梁豪君,刘相良,孙笑非. 滴注空气在脂多糖诱导的小鼠急性肺损伤模型建立过程中的作用[J]. 吉林大学学报(医学版), 2013, 39(6): 1089-1093. |
[10] | 边伟帅,晁彦公,陈炜,王兰,李黎明,关键,甄洁,盛博,刘平. 4种方法滴定急性呼吸窘迫综合征动物模型最佳呼气末正压效果的比较[J]. 吉林大学学报(医学版), 2013, 39(6): 1132-1137. |
[11] | 于嵩,胡江平. 姜黄素对铁负载小鼠脑组织caspase-3、caspase-9和livin蛋白表达的影响及其对神经系统的保护作用[J]. 吉林大学学报(医学版), 2013, 39(5): 868-871. |
[12] | 田 华,母传贤,尤丽菊,郭 辉,宋 玮. 姜黄素对糖尿病肾病大鼠肾脏的保护作用及其机制[J]. 吉林大学学报(医学版), 2013, 39(4): 747-750. |
[13] | 罗玲|王导新. 雌孕激素对ALI大鼠Ⅱ型肺泡上皮细胞ENaC表达的影响[J]. J4, 2012, 38(5): 836-840. |
[14] | 杨 苹,隋思博,王艳芳,杨 晶,张 敏,3,李校堃|郑 琳. 姜黄素及姜黄素衍生物A在大鼠血浆中含量的测定[J]. J4, 2012, 38(3): 598-602. |
[15] | 苗雨丹,董春玲,刘玲,夏长丽,苏略,李波. 暴露式与非暴露式气管滴注方法建立小鼠急性肺损伤模型及其效果比较[J]. J4, 2012, 38(3): 414-418. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 427
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1085
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|