[1] MADHURAKKAT PERIKAMANA S K, LEE J, AHMAD T, et al. Harnessing biochemical and structural cues for tenogenic differentiation of adipose derived stem cells (ADSCs) and development of an in vitro tissue interface mimicking tendon-bone insertion graft[J]. Biomaterials, 2018, 165:79-93. [2] FERNANDES M, VALENTE S G, SABONGI R G, et al. Bone marrow-derived mesenchymal stem cells versus adipose-derived mesenchymal stem cells for peripheral nerve regeneration[J]. Neural Regen Res, 2018, 13(1):100-104. [3] 宋孟晓,王燕,刘进忠.miR-222-5p在人根尖乳头干细胞成骨/成牙本质向分化中的作用[J].山东大学学报(医学版),2020,58(3):87-93,112. [4] PENG S P, CAO L H, HE S W, et al. An overview of long noncoding RNAs involved in bone regeneration from mesenchymal stem cells[J]. Stem Cells Int, 2018, 2018:8273648. [5] GAO X R, GE J, LI W Y, et al. LncRNA KCNQ1OT1 promotes osteogenic differentiation to relieve osteolysis via Wnt/β-catenin activation[J]. Cell Biosci, 2018, 8:19. [6] HUANG G X, KANG Y, HUANG Z Y, et al. Identification and characterization of long non-coding RNAs in osteogenic differentiation of human adipose-derived stem cells[J]. Cell Physiol Biochem, 2017, 42(3):1037-1050. [7] XIAO X X, ZHOU T W, GUO S C, et al. LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4[J]. Int J Cardiol, 2017, 243:404-412. [8] NARAYANAN A, SRINAATH N, ROHINI M, et al. Regulation of Runx2 by MicroRNAs in osteoblast differentiation[J]. Life Sci, 2019, 232:116676. [9] BAE Y J, YANG T, ZENG H C, et al. miRNA-34c regulates Notch signaling during bone development[J]. Hum Mol Genet, 2012, 21(13):2991-3000. [10] YU L J, XU Y S, QU H, et al. Decrease of MiR-31 induced by TNF-α inhibitor activates SATB2/RUNX2 pathway and promotes osteogenic differentiation in ethanol-induced osteonecrosis[J]. J Cell Physiol, 2019, 234(4):4314-4326. [11] 王洋,宋卓悦,连晓磊,等.脂肪和滑膜来源间充质干细胞成软骨分化能力的比较[J].郑州大学学报(医学版),2019,54(3):394-398. [12] NADERI N, COMBELLACK E J, GRIFFIN M, et al. The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery[J]. Int Wound J, 2017, 14(1):112-124. [13] AGHEBATI-MALEKI L, DOLATI S, ZANDI R, et al. Prospect of mesenchymal stem cells in therapy of osteoporosis:A review[J]. J Cell Physiol, 2019, 234(6):8570-8578. [14] RANSOHOFF J D, WEI Y N, KHAVARI P A. The functions and unique features of long intergenic non-coding RNA[J]. Nat Rev Mol Cell Biol, 2018, 19(3):143-157. [15] HUYNH N P, ANDERSON B A, GUILAK F, et al. Emerging roles for long noncoding RNAs in skeletal biology and disease[J]. Connect Tissue Res, 2017, 58(1):116-141. [16] HUANG X Z, HUANG J, LI W Z, et al. LncRNA-MALAT1 promotes osteogenic differentiation through regulating ATF4 by sponging miR-214:Implication of steroid-induced avascular necrosis of the femoral head[J]. Steroids, 2020, 154:108533. [17] YOSHIOKA H, YOSHIKO Y. The roles of long non-protein-coding RNAs in osteo-adipogenic lineage commitment[J]. Int J Mol Sci, 2017, 18(6):E1236. [18] JIN C Y, ZHENG Y F, HUANG Y P, et al. Long non-coding RNA MIAT knockdown promotes osteogenic differentiation of human adipose-derived stem cells[J]. Cell Biol Int, 2017, 41(1):33-41. [19] FAN F Y, DENG R, LAI S H, et al. Inhibition of microRNA-221-5p induces osteogenic differentiation by directly targeting smad3 in myeloma bone disease mesenchymal stem cells[J]. Oncol Lett, 2019, 18(6):6536-6544. [20] LAN C G, LONG L Z, XIE K G, et al. MiRNA-429 suppresses osteogenic differentiation of human adipose-derived mesenchymal stem cells under oxidative stress via targeting SCD-1[J]. Exp Ther Med, 2020, 19(1):696-702. [21] GAO Y, XIAO F, WANG C L, et al. Long noncoding RNA MALAT1 promotes osterix expression to regulate osteogenic differentiation by targeting miRNA-143 in human bone marrow-derived mesenchymal stem cells[J]. J Cell Biochem, 2018, 119(8):6986-6996. [22] YU C, LI L F, XIE F, et al. LncRNA TUG1 sponges miR-204-5p to promote osteoblast differentiation through upregulating Runx2 in aortic valve calcification[J]. Cardiovasc Res, 2018, 114(1):168-179. [23] WANG Q J, LI Y X, ZHANG Y, et al. LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p[J]. Biomed Pharmacother, 2017, 89:1178-1186. [24] ZARATE Y A, STEINRATHS M, MATTHEWS A, et al. Bone health and SATB2-associated syndrome[J]. Clin Genet, 2018, 93(3):588-594. [25] GONG Y M, XU F, ZHANG L, et al. MicroRNA expression signature for Satb2-induced osteogenic differentiation in bone marrow stromal cells[J]. Mol Cell Biochem, 2014, 387(1/2):227-239. [26] 王亮,钟武,陈睦虎.miR-34a对人脂肪间充质干细胞成骨向分化的调控[J].西安交通大学学报(医学版),2018,39(5):675-679,708. [27] HAO J B, ZHANG L, CONG G T, et al. MicroRNA-34b/c inhibits aldosterone-induced vascular smooth muscle cell calcification via a SATB2/Runx2 pathway[J]. Cell Tissue Res, 2016, 366(3):733-746. [28] TANG J F, ZHANG Z, JIN X Y, et al. miR-383 negatively regulates osteoblastic differentiation of bone marrow mesenchymal stem cells in rats by targeting Satb2[J]. Bone, 2018, 114:137-143. |