J4

• 基础研究 • 上一篇    下一篇

顶端动脉瘤的血流动力学数值模拟切应力分析

陈旭东1,罗 祺2,罗毅男2,赵 刚2,付方雪1,胡继良1,吴耀晨1   

  1. 1. 暨南大学第二临床学院神经外科 深圳市人民医院神经外科,广东 深圳518020;2. 吉林大学第一医院神经外科,吉林 长春130021
  • 收稿日期:2005-03-14 修回日期:1900-01-01 出版日期:2005-05-28 发布日期:2005-05-28

Hemodynamic numerical simulation and wall shear stress analysis of intracranial terminal aneurysms

CHEN Xu-dong1, LUO Qi2, LUO Yi-nan2, ZHAO Gang2, FU Fang-xue1,HU Ji-liang1,WU Yao-chen1   

  1. 1. Department of Neurosurgery, Second Hospital, Ji′nan University,Department of Neurosurgery,People′s Hospital of Shenzhen, Shenzhen 518020, China;2. Department of Neurosurgery, First Hospital,Jilin University, Changchun 130021,China
  • Received:2005-03-14 Revised:1900-01-01 Online:2005-05-28 Published:2005-05-28

摘要: 目的:探讨顶端动脉瘤的血流动力学特点,分析动脉瘤的生长、破裂的可能机制。方法:采用计算流体力学(CFD)软件结合顶端动脉瘤的医学影像,对动脉瘤内血液流动数值模拟切应力进行分析。 结果:0~0.22 T时,血管内血流速度急剧上升到最大值;0.22~0.55 T时,从最大值急剧下降到初始值。切应力随血流速度变化,在0.22 T时动脉瘤颈部切应力值最大,0.55 T时最小,而在这两时刻,动脉瘤壁不存在切应力。 结论:切应力由血流冲击造成,其大小与血流速度变化一致。CFD数值模拟是一种反映动脉瘤血流动力学较好的方法,为动脉瘤的病理生理机制和临床治疗提供较好的帮助。

关键词: 病理生理学, 血液动力学, 计算流体力学, 数值模拟, 切应力

Abstract: Objective To investigate the hemodynamic characteristics of intracranial terminal aneurysms and analysis the possible mechanism of growth and rupture of intracranial aneurysms. Methods Some images of intracranial terminal aneurysms were handled by some image processing software. The profile meshed by some computational fluid dynamics (CFD) software were used to simulate the flow and analysis wall shear stress. Results From the beginning to 0.22 T in every cardiac cycle, the wall shear stress had a change sharply to the maximum and then decreased dramatically to the zero from 0.22-0.55 T accompany with velocity. There were maximum stress and minimum stress when 0.22 T and 0.55T at neck, but meanwhile there was no wall shear stress at the wall. Conclusion Pressure is one of risk factors which will make the aneurysm rupture. CFD simulation can provide key hemodynamic information for pathophysiological mechanisms and clinical treatment of intracranial terminal aneurysms.

Key words: physiopathology, hemodynamics, compututional fluid dynamics, numerical simulation, shear stress

中图分类号: 

  • R743