[1] MAS VR, MUELLER TF, ARCHER KJ, et al. Identifying biomarkers as diagnostic tools in kidney transplantation[J]. Expert Rev Mol Diagn, 2011,11(2):183-196. [2] LO D J, KAPLAN B, KIRK A D. Biomarkers for kidney transplant rejection[J]. Nat Rev Nephrol, 2014, 10(4):215-225. [3] FEHR T, COHEN C D. Predicting an allograft's fate[J]. Kidney Int, 2011,80(12):1254-1255. [4] BIOMARKERS DEFINITIONS WORKING GROUP. Biomarkers and surrogate endpoints:preferred definitions and conceptual framework[J]. Clin Pharmacol Ther, 2001, 69(3):89-95. [5] DEL PRETE G, DE CARLI M, ALMERIGOGNA F, et al. Preferential expression of CD30 by human CD4+ T cells producing Th2-type cytokines[J]. FASEB J, 1995,9(1):81-86. [6] WEINER R, ZIPPERLE S, DANIEL V, et al. Pretransplant CD4 helper function and interleukin 10 response predict risk of acute kidney graft rejection[J]. Transplantation, 1996,62(11):1606-1614. [7] RAJAKARIAR R, JIVANJI N, VARAGUNAM M, et al. High pre-transplant soluble CD30 levels are predictive of the grade of rejection[J]. Am J Transplant, 2005,5(8):1922-1925. [8] CINTI P, PRETAGOSTINI R, ARPINO A, et al. Evaluation of pretransplant immunologic status in kidney-transplant recipients by panel reactive antibody and soluble CD30 determinations[J]. Transplantation, 2005,79(9):1154-1156. [9] SENGUL S, KEVEN K, GORMEZ U, et al. Identification of patients at risk of acute rejection by pretransplantation and posttransplantation monitoring of soluble CD30 levels in kidney transplantation[J]. Transplantation, 2006,81(8):1216-1219. [10] ALTERMANN W, SCHLAF G, ROTHHOFF A, et al. High variation of individual soluble serum CD30 levels of pre-transplantation patients:sCD30 a feasible marker for prediction of kidney allograft rejection?[J]. Nephrol Dial Transplant, 2007,22(10):2795-2799. [11] SHOOSHTARIZADEH T, MOHAMMADALI A, OSSAREH S, et al. Relation between pretransplant serum levels of soluble CD30 and acute rejection during the first 6 months after a kidney transplant[J]. Exp Clin Transplant, 2013,11(3):229-233. [12] ROTONDI M, ROSATI A, BUONAMANO A, et al. High pretransplant serum levels of CXCL10/IP-10 are related to increased risk of renal allograft failure[J]. Am J Transplant, 2004,4(9):1466-1474. [13] LAZZERI E, ROTONDI M, MAZZINGHI B, et al. High CXCL10 expression in rejected kidneys and predictive role of pretransplant serum CXCL10 for acute rejection and chronic allograft nephropathy[J]. Transplantation, 2005,79(9):1215-1220. [14] ROTONDI M, NETTI G S, LAZZERI E, et al. High pretransplant serum levels of CXCL9 are associated with increased risk of acute rejection and graft failure in kidney graft recipients[J]. Transpl Int, 2010,23(5):465-475. [15] AUGUSTINE J J, SIU D S, CLEMENTE M J, et al. Pre-transplant IFN-gamma ELISPOTs are associated with post-transplant renal function in African American renal transplant recipients[J]. Am J Transplant, 2005,5(8):1971-1975. [16] BENDJELLOUL F, DESIN T S, SHOKER A S. Donor non-specific IFN-gamma production by primed alloreactive cells as a potential screening test to predict the alloimmune response[J]. Transpl Immunol, 2004,12(2):167-176. [17] HEEGER P S, GREENSPAN N S, KUHLENSCHMIDT S, et al. Pretransplant frequency of donor-specific, IFN-gamma-producing lymphocytes is a manifestation of immunologic memory and correlates with the risk of posttransplant rejection episodes[J]. J Immunol, 1999,163(4):2267-2275. [18] BELLISOLA G, TRIDENTE G, NACCHIA F, et al. Monitoring of cellular immunity by interferon-gamma enzyme-linked immunosorbent spot assay in kidney allograft recipients:preliminary results of a longitudinal study[J]. Transplant Proc, 2006,38(4):1014-1017. [19] NAESENS M, KHATRI P, LI L, et al. Progressive histological damage in renal allografts is associated with expression of innate and adaptive immunity genes[J]. Kidney Int, 2011,80(12):1364-1376. [20] SIGDEL T K, GAO Y Q, HE J T, et al. Mining the human urine proteome for monitoring renal transplant injury[J]. Kidney Int, 2016,89(6):1244-1252. [21] FREUE G V, SASAKI M, MEREDITH A, et al. Proteomic signatures in plasma during early acute renal allograft rejection[J]. Mol Cell Proteomics, 2010,9(9):1954-1967. [22] PONGPIRUL W, CHANCHAROENTHANA W, PONGPIRUL K, et al. B-cell activating factor, a predictor of antibody mediated rejection in kidney transplantation recipients[J]. Nephrology(Carlton), 2018, 23(2):169-174. [23] SIGDEL T K, KAUSHAL A, GRITSENKO M, et al. Shotgun proteomics identifies proteins specific for acute renal transplant rejection[J]. Proteomics Clin Appl, 2010,4(1):32-47. [24] WU D J, ZHU D, XU M, et al. Analysis of transcriptional factors and regulation networks in patients with acute renal allograft rejection[J]. J Proteome Res, 2011,10(1):175-181. [25] LOFTHEIM H, MIDTVEDT K, HARTMANN A, et al. Urinary proteomic shotgun approach for identification of potential acute rejection biomarkers in renal transplant recipients[J]. Transplant Res, 2012,1(1):1-9. [26] SIGDEL T K, SALOMONIS N, NICORA C D, et al. The identification of novel potential injury mechanisms and candidate biomarkers in renal allograft rejection by quantitative proteomics[J]. Mol Cell Proteomics, 2014,13(2):621-631. [27] KIM S C, PAGE E K, KNECHTLE S J. Urine proteomics in kidney transplantation[J]. Transplant Rev(Orlando), 2014,28(1):15-20. [28] PEREZ J D, SAKATA M M, COLUCCI J A, et al. Plasma proteomics for the assessment of acute renal transplant rejection[J]. Life Sci, 2016,158:111-120. [29] ONG S, MANNON R B. Genomic and proteomic fingerprints of acute rejection in peripheral blood and urine[J]. Transplant Rev(Orlando), 2015, 29(2):60-67. [30] SUTHANTHIRAN M, SCHWARTZ J E, DING R C, et al. Urinary-cell mRNA profile and acute cellular rejection in kidney allografts[J]. N Engl J Med, 2013,369(1):20-31. [31] FLECHNER S M, KURIAN S M, HEAD S R, et al. Kidney transplant rejection and tissue injury by gene profiling of biopsies and peripheral blood lymphocytes[J]. Am J Transplant, 2004,4(9):1475-1489. [32] VASCONCELLOS L M, SCHACHTER A D, ZHENG X X, et al. Cytotoxic lymphocyte gene expression in peripheral blood leukocytes correlates with rejecting renal allografts[J]. Transplantation, 1998,66(5):562-566. [33] LI B, HARTONO C, DING R, et al. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine[J]. N Engl J Med, 2001,344(13):947-954. [34] AFANEH C, MUTHUKUMAR T, LUBETZKY M, et al. Urinary cell levels of mRNA for OX40, OX40L, PD-1, PD-L1, or PD-L2 and acute rejection of human renal allografts[J]. Transplantation, 2010,90(12):1381-1387. [35] HRICIK D E, NICKERSON P, FORMICA R N, et al. Multicenter validation of urinary CXCL9 as a risk-stratifying biomarker for kidney transplant injury[J]. Am J Transplant, 2013,13(10):2634-2644. [36] SRINIVAS T R, KAPLAN B. Urinary biomarkers and kidney transplant rejection:fine-tuning the radar[J]. Am J Transplant, 2013,13(10):2519-2521. [37] HIRT-MINKOWSKI P, DE SERRES S A, HO J. Developing renal allograft surveillance strategies-urinary biomarkers of cellular rejection[J]. Can J Kidney Health Dis, 2015,2:28. [38] ANGLICHEAU D, SHARMA V K, DING R C, et al. MicroRNA expression profiles predictive of human renal allograft status[J]. Proc Natl Acad Sci U S A, 2009,106(13):5330-5335. [39] LORENZEN J M, VOLKMANN I, FIEDLER J, et al. Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients[J]. Am J Transplant, 2011, 11(10):2221-2227. [40] BETTS G, SHANKAR S, SHERSTON S, et al. Examination of serum miRNA levels in kidney transplant recipients with acute rejection[J]. Transplantation, 2014,97(4):e28-30. [41] LI L, KHATRI P, SIGDEL T K, et al. A peripheral blood diagnostic test for acute rejection in renal transplantation[J]. Am J Transplant, 2012,12(10):2710-2718. [42] ALLISON S J. Transplantation:Biomarkers in peripheral blood detect acute rejection[J]. Nat Rev Nephrol, 2012,8(12):681. [43] KURIAN S M, WILLIAMS A N, GELBART T, et al. Molecular classifiers for acute kidney transplant rejection in peripheral blood by whole genome gene expression profiling[J]. Am J Transplant, 2014,14(5):1164-1172. [44] ROEDDER S, SIGDEL T, SALOMONIS N, et al. The kSORT assay to detect renal transplant patients at high risk for acute rejection:results of the multicenter AART study[J]. PLoS Med, 2014,11(11):e1001759. [45] SHEN-ORR S S, TIBSHIRANI R, KHATRI P, et al. Cell type-specific gene expression differences in complex tissues[J]. Nat Methods, 2010,7(4):287-289. [46] CRESPO E, ROEDDER S, SIGDEL T, et al. Molecular and functional noninvasive immune monitoring in the ESCAPE study for prediction of subclinical renal allograft rejection[J]. Transplantation, 2017,101(6):1400-1409. [47] SIGDEL T K, BESTARD O, TRAN T Q, et al. A computational gene expression score for predicting immune injury in renal allografts[J]. PLoS One, 2015,10(9):e0138133. [48] MATZ M, HEINRICH F, ZHANG Q, et al. The regulation of interferon type Ⅰ pathway-related genes RSAD2 and ETV7 specifically indicates antibody-mediated rejection after kidney transplantation[J]. Clin Transplant, 2018,32(12):e13429. [49] BLOOM R D, BROMBERG J S, POGGIO E D, et al. Cell-free DNA and active rejection in kidney allografts[J]. J Am Soc Nephrol, 2017,28(7):2221-2232. [50] FRIEDEWALD J J, KURIAN S M, HEILMAN R L, et al. Development and clinical validity of a novel blood-based molecular biomarker for subclinical acute rejection following kidney transplant[J]. Am J Transplant, 2019,19(1):98-109. |