Journal of Jilin University(Medicine Edition) ›› 2020, Vol. 46 ›› Issue (6): 1338-1344.doi: 10.13481/j.1671-587x.20200636
• Review • Previous Articles
Received:
2020-03-29
Online:
2020-11-28
Published:
2021-01-27
CLC Number:
Tab.1
Different kinds of microorganisms and their mechanisms of Cr(Ⅵ) bioremediation"
Strain | Mechanism | Reference |
---|---|---|
Algae | ||
Spirulina platensis | Biosorption | FERNáNDEZ,et al.[ |
Spirulina platensis | Biosorption | FERNáNDEZ, et al.[ |
Pelvetia canaliculata | Biosorption | FERNáNDEZ,et al.[ |
Dunaliella salina | Biosorption | VIDYALAXMI,et al.[ |
Bacteria | ||
Bacillus sp. CRB-B1 | Biosorption, Biotransformation | TAN, et al.[ |
Pseudomonas aeruginosa G12 | Biotransformation | AN, et al.[ |
sp. QH-2 | Biotransformation | WANG, et al.[ |
Staphylococcusaureus K1 | Biosorption, Biotransformation | TARIQ, et al.[ |
Stenotrophomonas sp. WY601 | Biotransformation | LIU, et al.[ |
Pseudomonas sp. strain DC-B3 | Biosorption, Biotransformation | CHANG, et al.[ |
Bacillus strain TCL | Biotransformation | BANERJEE, et al.[ |
Aeromonas hydrophila | Biotransformation | SHI, et al.[ |
Sporosarcina saro mensis M52 | Biotransformation | ZHAO, et al.[ |
Fungi | ||
P. saccharolyticum LY10. | Biosorption, Bioaccumulation | LONG, et al.[ |
Papiliotrema laurentii strain RY1 | Biosorption | SARKAR, et al.[ |
Trichoderma sp. | Biosorption, Bioaccumulation | KUMAR, et al.[ |
Pisolithus sp1 | Biosorption, Bioaccumulation | SHI, et al.[ |
Aspergillus flavus CR500 | Biosorption, Biotransformation | KUMAR,et al.[ |
Tab.2
Microbial adsorption characteristics and their influencing factors"
Strain | Characteristics of adsorption | Influencing factor |
---|---|---|
Dead bacteria | ①No need to add nutrients; ②Not affected by toxic substances; ③ May occur in high concentrations of Cr(Ⅵ); ④ Abscission tendency of loose adsorption. | Initial concentration of Cr(Ⅵ) , contact time, pH, biosorbent dosage, et al. |
Living bacteria | ①Mechanisms such as transportation, formation and precipitation of extracellular complexes; ②Remove Cr(Ⅵ) while growing; ③ High concentration of Cr(Ⅵ) affects growth of strains | Initial concentration of Cr(Ⅵ), contact time, pH, temperature, and environmental factors such as existence of metal ions and small molecules |
1 | SARKAR A, SAR P, ISLAM E. Hexavalent chromium reduction by microbacterium oleivorans A1: a possible mechanism of chromate -detoxification and -bioremediation[J]. Recent Pat Biotechnol, 2016, 9(2): 116-129. |
2 | 刘 靳, 涂耀仁, 蒲雅丽, 等. 重金属在黄浦江流域的污染现状与来源解析[J]. 环境科技, 2019, 32(6): 1-7. |
3 | 郑灿利, 范雪璐, 董 娴, 等. 贵阳市秋冬季PM2.5中重金属污染特征、来源解析及健康风险评估[J]. 环境科学研究, 2020, 33(6): 1376-1383. |
4 | WANG S, CAI L M, WEN H H, et al. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China[J]. Sci Total Environ, 2019, 655: 92-101. |
5 | ZHAO R, YAN S S, LIU M, et al. Seafood consumption among Chinese coastal residents and health risk assessment of heavy metals in seafood[J]. Environ Sci Pollut Res Int, 2016, 23(16): 16834-16844. |
6 | MIRETZKY P, CIRELLI A F. Cr(Ⅵ) and Cr(Ⅲ) removal from aqueous solution by raw and modified lignocellulosic materials: a review[J]. J Hazard Mater, 2010, 180(1-3): 1-19. |
7 | 蔡庆涛, 赵 苒. 十溴联苯醚微生物降解的研究进展[J]. 吉林大学学报(医学版), 2015, 41(5): 1090-1094. |
8 | ZHAO R, WANG B, CAI Q T, et al. Bioremediation of hexavalent chromium pollution by sporosarcina saromensis M52 isolated from offshore sediments in Xiamen, China[J]. Biomed Environ Sci, 2016, 29(2): 127-136. |
9 | JOUTEY N T, SAYEL H, BAHAFID W, et al. Mechanisms of hexavalent chromium resistance and removal by microorganisms[J]. Rev Environ Contam Toxicol, 2015, 233: 45-69. |
10 | GARCÍA-HERNÁNDEZ M A, VILLARREAL-CHIU J F, GARZA-GONZÁLEZ M T. Metallophilic fungi research: an alternative for its use in the bioremediation of hexavalent chromium[J]. Int J Environ Sci Technol, 2017, 14(9): 2023-2038. |
11 | JOBBY R, JHA P, YADAV A K, et al. Biosorption and biotransformation of hexavalent chromium [Cr(Ⅵ)]: a comprehensive review[J]. Chemosphere, 2018, 207: 255-266. |
12 | ADHIKARI T, MANNA M C, SINGH M V, et al. Bioremediation measure to minimize heavy metals accumulation in soils and crops irrigated with city effluent[J]. J Food Agric Environ, 2015, (2): 266-270. |
13 | SHARMA M, NANDY A, TAYLOR N, et al. Bioelectrochemical remediation of phenanthrene in a microbial fuel cell using an anaerobic consortium enriched from a hydrocarbon-contaminated site[J]. J Hazard Mater, 2020, 389: 121845. |
14 | WU M H, LI Y Z, LI J J, et al. Bioreduction of hexavalent chromium using a novel strain CRB-7 immobilized on multiple materials[J]. J Hazard Mater, 2019, 368: 412-420. |
15 | PRADHAN D, SUKLA L B, MISHRA B B, et al. Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp .[J]. J Clean Prod, 2019, 209: 617-629. |
16 | FERNÁNDEZ P M, VIÑARTA S C, BERNAL A R, et al. Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives[J]. Chemosphere, 2018, 208: 139-148. |
17 | VIDYALAXMI, KAUSHIK G, RAZA K. Potential of novel Dunaliella Salina from sambhar salt lake, India, for bioremediation of hexavalent chromium from aqueous effluents: an optimized green approach[J]. Ecotoxicol Environ Saf, 2019, 180: 430-438. |
18 | TAN H, WANG C, ZENG G Q, et al. Bioreduction and biosorption of Cr(Ⅵ) by a novel Bacillus sp. CRB-B1 strain[J]. J Hazard Mater, 2020, 386: 121628. |
19 | AN Q, DENG S M, XU J, et al. Simultaneous reduction of nitrate and Cr(Ⅵ) by Pseudomonas aeruginosa strain G12 in wastewater[J]. Ecotoxicol Environ Saf, 2020, 191: 110001. |
20 | WANG C Y, CUI Y S. Recognition of a new Cr(Ⅵ)-reducing strain and study of the potential capacity for reduction of Cr(Ⅵ) of the strain[J]. Biomed Res Int, 2019, 2019: 5135017. |
21 | TARIQ M, WASEEM M, RASOOL M H, et al. Isolation and molecular characterization of the indigenous Staphylococcus aureus strain K1 with the ability to reduce hexavalent chromium for its application in bioremediation of metal-contaminated sites[J]. Peer J, 2019, 7: e7726. |
22 | LIU H J, WANG Y Q, ZHANG H, et al. Synchronous detoxification and reduction treatment of tannery sludge using Cr (Ⅵ) resistant bacterial strains[J]. Sci Total Environ, 2019, 687: 34-40. |
23 | CHANG J J, DENG S J, LIANG Y, et al. Cr(Ⅵ) removal performance from aqueous solution by Pseudomonas sp. strain DC-B3 isolated from mine soil: characterization of both Cr(VI) bioreduction and total Cr biosorption processes[J]. Environ Sci Pollut Res Int, 2019, 26(27): 28135-28145. |
24 | BANERJEE S, MISRA A, CHAUDHURY S, et al. A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential[J]. J Hazard Mater, 2019, 367: 215-223. |
25 | SHI Z J, SHEN W J, YANG K, et al. Hexavalent chromium removal by a new composite system of dissimilatory iron reduction bacteria Aeromonas hydrophila and nanoscale zero-valent iron[J]. Chem Eng J, 2019, 362: 63-70. |
26 | LONG D Y, HASHMI M Z, SU X M, et al. Cr(Ⅵ) reduction by an extracellular polymeric substance (EPS) produced from a strain of Pseudochrobactrum saccharolyticum [J]. 3 Biotech, 2019, 9(3): 1-9. |
27 | SARKAR S, MUKHERJEE A, PARVIN R, et al. Removal of Pb (Ⅱ), As (Ⅲ), and Cr (Ⅵ) by nitrogen-starved Papiliotrema laurentii strain RY1[J]. J Basic Microbiol, 2019, 59(10): 1016-1030. |
28 | KUMAR V, DWIVEDI S K. Hexavalent chromium stress response, reduction capability and bioremediation potential of Trichoderma sp. isolated from electroplating wastewater[J]. Ecotoxicol Environ Saf, 2019, 185: 109734. |
29 | SHI L, DENG X P, YANG Y, et al. A Cr(Ⅵ)-tolerant strain, Pisolithus sp1, with a high accumulation capacity of Cr in mycelium and highly efficient assisting Pinus thunbergii for phytoremediation[J]. Chemosphere, 2019, 224: 862-872. |
30 | KUMAR V, DWIVEDI S K. Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater[J]. Chemosphere, 2019, 237: 124567. |
31 | 余天红, 黎华寿. 砷污染土壤微生物修复机制及其研究进展[J]. 环境污染与防治, 2014, 36(12): 77-82. |
32 | 陈 颖, 杨静翎, 凌 敏. 含铬(Cr6+)废水处理技术综述[J]. 科技与企业, 2014(22): 146. |
33 | PRATUSH A, KUMAR A, HU Z. Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review[J]. Int Microbiol, 2018, 21(3): 97-106. |
34 | KAPOOR A, VIRARAGHAVAN T. Fungal biosorption: an alternative treatment option for heavy metal bearing wastewaters: a review[J]. Bioresour Technol, 1995, 53(3): 195-206. |
35 | AHLUWALIA S S, GOYAL D. Removal of Cr(VI) from aqueous solution by fungal biomass[J]. Eng Life Sci, 2010, 10(5): 480-485. |
36 | JAMALI N, GHADERIAN S M, KARIMI N. effects of cadmium and zinc on growth and metal accumulation of mathiola flavida boiss[J]. Environ Eng Manag J, 2014, 13(12): 2937-2944. |
37 | SATYAPAL G K, RANI S, KUMAR M, et al. Potential role of arsenic resistant bacteria in bioremediation: Current status and future prospects[J]. J Microb Biochem Technol, 2016, 8(3): 256-258. |
38 | HIMA K A, SRINIVASA R R, VIJAYA S S, et al. Biosorption: an eco-friendly alternative for heavy metal removal[J]. Afr J Biotechnol, 2007, 6(25): 2924-2931. |
39 | ZENG Q, HU Y T, YANG Y R, et al. Cell envelop is the key site for Cr(Ⅵ) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr(Ⅵ) reducing bacterium[J]. J Hazard Mater, 2019, 368: 149-155. |
40 | HE C W, GU L P, XU Z X, et al. Cleaning chromium pollution in aquatic environments by bioremediation, photocatalytic remediation, electrochemical remediation and coupled remediation systems[J]. Environ Chem Lett, 2020, 18(3): 561-576. |
41 | SANDANA MALA J G, SUJATHA D, ROSE C. Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation[J]. Microbiol Res, 2015, 170: 235-241. |
42 | THATOI H, DAS S, MISHRA J, et al. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review[J]. J Environ Manage, 2014, 146: 383-399. |
43 | ROMO-RODRÍGUEZ P, ACEVEDO-AGUILAR F J, LOPEZ-TORRES A, et al. Cr(Ⅵ) reduction by gluconolactone and hydrogen peroxide, the reaction products of fungal glucose oxidase: Cooperative interaction with organic acids in the biotransformation of Cr(Ⅵ)[J]. Chemosphere, 2015, 134: 563-570. |
44 | DHAL B, THATOI H N, DAS N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review[J]. J Hazard Mater, 2013, 250: 272-291. |
45 | ACEVEDO-AGUILAR F J, ESPINO-SALDAÑA A E, LEON-RODRIGUEZ I L, et al. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of Filamentous fungi indigenous to contaminated wastes[J]. Can J Microbiol, 2006, 52(9): 809-815. |
46 | WROBEL K, CORRALES ESCOBOSA A R, GONZALEZ IBARRA A A, et al. Mechanistic insight into chromium(Ⅵ) reduction by oxalic acid in the presence of manganese(Ⅱ)[J]. J Hazard Mater, 2015, 300: 144-152. |
47 | COREÑO-ALONSO A, ACEVEDO-AGUILAR F J, REYNA-LÓPEZ G E, et al. Cr(Ⅵ) reduction by an Aspergillus tubingensis strain: role of carboxylic acids and implications for natural attenuation and biotreatment of Cr(Ⅵ) contamination[J]. Chemosphere, 2009, 76(1): 43-47. |
48 | 郭东北, 唐 晨, 张 敏, 等. 金属离子和小分子物质对耐铬(Ⅵ)菌株M52还原能力的影响[J]. 吉林大学学报(医学版), 2019, 45(5): 1003-1008. |
49 | LI H, HUANG S B, ZHANG Y Q. Cr(Ⅵ) removal from aqueous solution by thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1 in the presence of single and multiple heavy metals[J]. J Microbiol, 2016, 54(9): 602-610. |
50 | 郝孔利, 张 杰. 细菌和真菌去除六价铬机理的研究进展[J]. 环境科技, 2018, 31(6): 66-70. |
51 | 晏晓丹, 刘卫国, 史学峰, 等. 铬污染土壤微生物修复机制及其研究进展[J]. 环境科学导刊, 2019, 38(S1): 1-6. |
[1] | GUO Dongbei, TANG Chen, ZHANG Min, FAN Chun, YUE Ziyu, LI Jiayao, CHEN Qun, ZHAO Ran. Effects of metal ions and small molecules on reduction of Cr(Ⅵ) resistant strain M52 [J]. Journal of Jilin University(Medicine Edition), 2019, 45(05): 1003-1008. |
[2] | ZHANG Hui-hui,LIU Fan-yu,YAO Yan,CHEN Ze-liang,SUN Hua-nan,ZHEN Qing. Application of nucleic acid isothermal amplification- immunochromatographic test in diagnosis of brucellosis [J]. Journal of Jilin University Medicine Edition, 2013, 39(2): 410-414. |