Journal of Jilin University(Medicine Edition) ›› 2021, Vol. 47 ›› Issue (2): 519-527.doi: 10.13481/j.1671-587X.20210235
• Review • Previous Articles Next Articles
Received:
2020-05-03
Online:
2021-03-28
Published:
2021-03-25
CLC Number:
Tab.1
Nano-scale carriers for carrying KGN and their main characteristics"
Composition | Size by DLS(l/nm) | Surface charge | Carrying method and loading rate | KGN release characteristic | Scaffold | Advantage and feature |
---|---|---|---|---|---|---|
RGD-KGN- UCNP@SiO2 NPs | 35 | n/a | Conjugated; n/a | More than 50% in 4 h with NIR irradiation | n/a | Long-term tracking of hMSCs by using NIR light; NIR-triggered release of KGN in hMSCs |
PN-KGN NPs | 25 | + | Conjugated; n/a | 20% in 30 d | n/a | Promoting electrostatic interactions with cartilage matrix; protecting cartilage for more than 12 weeks after IA injection |
PN-KGN NPs | 25 | + | Conjugated; 13% | 11% in 11 d | AMSA/AG hydrogels | Recruiting endogenous MSCs; synergistically enhancing the chondrogenesis of MSCs by loading both KGN and TGF-β3 |
USPIO-KGN NPs | 14±3 | n/a | Conjugated; n/a | 32% in 6 d | Collagen /cellulose nanocrystals scaffold | Recruiting endogenous MSCs;noninvasively monitoring the sca?olds degradation process and observing the neocartilage regeneration by MRI |
USPIO-KGN NPs | 14±2(TEM) | n/a | Conjugated; n/a | 32% in 6 d | Cellulose nanocrystal/ dextran hydrogels | Recruiting endogenous MSCs; noninvasively monitoring the degradation of hydrogels and neocartilage regeneration in realtime by MRI |
F127/COS/ KGNDCF nanospheres | 4 ℃:650; 37 ℃:305 | n/a | Conjugated; n/a | 20%—50% in 14 d (enhanced with decreasing F127 content ) | n/a | Rapid release of DCF for subsidence of inflammation, sustained release of KGN for cartilage regeneration; release enhanced by cold treatment |
PGS-KGN nanofibers | 617±235(SEM) | n/a | Loaded; n/a | (0.32±0.03) μg·mg-1(weight of scaffold) in 21 d | PGS/PCL aligned nanofibers | Mimicking structural features of ECM in superficial zone of articular cartilage |
HNT/KGN | 0.002wt% HNT:235±20;0.005wt% HNT: 219±13 | — | Loaded; 6wt% | In PBS:70% in 7 d; In synovial fluid: 100% in 38 d; Hydrogels in PBS:more than 50% in 25 h | HNT/ KGN/ Lap hydrogels | HNT reinforced the rheological properties of the hydrogel;self-repairing after disruption; stable to ultrasound irradiation |
PLGA-KGN NPs | 270 | n/a | Loaded; 7.5wt% | Free : 85% in 60 d; In hydrogels: 70% in 60 d | Acylated HA hydrogels | Recruiting endogenous MSCs;in situ gelation under UV light;sustained release manner |
CHI-KGN NPs/ CHI-KGN MPs | NPs: 150±39; MPs: 1840±540 | —/+ | Conjugated; NPs:(98.1±1.6)%;MPs:(97.9±1.9)% | NPs: 30% in 50 d; MPs: 50% in 50 d | n/a | Sustained release profiles; greater ability for NPs to promote chondrogenic differentiation and cartilage regeneration |
PEG-PAMAM- KGN(PPK)/KGN-PEG- PAMAM(KPP) | PPK:36.2±0.2; KPP:33.3±0.4 | —/+ | Conjugated; PPK:(5.50± 0.2)wt%; KPP:(5.23±0.34)wt% | n/a | n/a | Positive surface charge promoting cellular uptake |
PEG-KGN micelles/ HA-PEG-KGN hydrogels | Free: 341.4±58.5;HA hydrogels: 424.7±102.3 | n/a | Conjugated; n/a | Micelles:(51.2±5.7)% in 48 h; Hydrogels:(32.4±3.3)% in 5 d | HA hydrogels | Synergistically acting with HA to inhibit the progress of OA |
1 | KWON J Y, LEE S H, NA H S, et al. Kartogenin inhibits pain behavior, chondrocyte inflammation, and attenuates osteoarthritis progression in mice through induction of IL-10 [J]. Sci Rep, 2018, 8(1): 13832. |
2 | LIU C, LI Y, YANG Z, et al. Kartogenin enhances the therapeutic effect of bone marrow mesenchymal stem cells derived exosomes in cartilage repair [J]. Nanomedicine (Lond), 2020, 15(3): 273-288. |
3 | SPAKOVA T,PLSIKOVA J, HARVANOVA D, et al. Influence of kartogenin on chondrogenic differentiation of human bone marrow-derived MSCs in 2D culture and in co-cultivation with OA osteochondral explant [J]. Molecules, 2018, 23(1): 181. |
4 | JIA Z, WANG S, LIANG Y, et al. Combination of kartogenin and transforming growth factor-beta3 supports synovial fluid-derived mesenchymal stem cell-based cartilage regeneration [J]. Am J Transl Res, 2019, 11(4): 2056-2069. |
5 | ALMEID B, WANG Y Y, SHUKLA A. Effects of nanoparticle properties on kartogenin delivery and interactions with mesenchymal stem cells [J]. Ann Biome Eng, 2020,48(7): 2090-2102. |
6 | XU J, FENG Q, LIN S, et al. Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules [J]. Biomaterials, 2019, 210: 51-61. |
7 | YANG W, ZHU P, HUANG H, et al. Functionalization of novel theranostic hydrogels with kartogenin-grafted USPIO nanoparticles to enhance cartilage regeneration [J]. ACS Appl Mater Interfaces, 2019, 11(38): 34744-34754. |
8 | ZHANG S, HU P, LIU T, et al. Kartogenin hydrolysis product 4-aminobiphenyl distributes to cartilage and mediates cartilage regeneration [J]. Theranostics, 2019, 9(24): 7108-7121. |
9 | JOHNSON K, ZHU S, TREMBLAY M S, et al. A stem cell-based approach to cartilage repair [J]. Science, 2012, 336(6082): 717-721. |
10 | DECKER R S, KOYAMA E, ENOMOTO-IWAMOTO M, et al. Mouse limb skeletal growth and synovial joint development are coordinately enhanced by Kartogenin [J]. Dev Biol, 2014, 395(2): 255-267. |
11 | WANG Y, CHEN G, YAN J, et al. Upregulation of SIRT1 by kartogenin enhances antioxidant functions and promotes osteogenesis in human mesenchymal stem cells [J]. Oxid Med Cell Longev, 2018, 2018: 1368142. |
12 | ZHOU Q, ZHANG J H, YUAN S, et al. A new insight of kartogenin induced the mesenchymal stem cells (MSCs) selectively differentiate into chondrocytes by activating the bone morphogenetic protein 7 (BMP-7)/Smad5 pathway [J]. Med Sci Monit, 2019, 25: 4960-4967. |
13 | JING H, ZHANG X, LUO K, et al. miR-381-abundant small extracellular vesicles derived from kartogenin-preconditioned mesenchymal stem cells promote chondrogenesis of MSCs by targeting TAOK1 [J]. Biomaterials, 2020, 231: 119682. |
14 | FAN W, YUAN L, LI J, et al. Injectable double-crosslinked hydrogels with kartogenin-conjugated polyurethane nano-particles and transforming growth factor β3 for in-situ cartilage regeneration [J]. Mat Sci Eng C-Mater, 2020, 110: 110705. |
15 | SHI D, XU X, YE Y, et al. Photo-cross-linked scaffold with kartogenin-encapsulated nanoparticles for cartilage regeneration [J]. Acs Nano, 2016, 10(1): 1292-1299. |
16 | VALIANI A, IZADI MA, BAHRAMIAN H, et al. Comparison between the effect of kartogenin and TGFβ3 on chondrogenesis of human adipose- derived stem cells in fibrin scaffold [J]. Bratisl Med J, 2017, 118(10): 591-597. |
17 | JING H, ZHANG X, GAO M, et al. Kartogenin preconditioning commits mesenchymal stem cells to a precartilaginous stage with enhanced chondrogenic potential by modulating JNK and β-catenin-related pathways [J]. Faseb Journal, 2019, 33(4): 5641-5653. |
18 | ONO Y, ISHIZUKA S, KNUDSON C B, et al. Chondroprotective effect of kartogenin on CD44-mediated functions in articular cartilage and chondrocytes [J]. Cartilage, 2014, 5(3): 172-180. |
19 | MOHAN G, MAGNITSKY S, MELKUS G, et al. Kartogenin treatment prevented joint degeneration in a rodent model of osteoarthritis: A pilot study [J]. J Orthop Res, 2016, 34(10): 1780-1789. |
20 | LIU C, MA X Q, LI T, et al. Kartogenin, transforming growth factor-β1 and bone morphogenetic protein-7 coordinately enhance lubricin accumulation in bone-derived mesenchymal stem cells [J]. Cell Biol Int, 2015, 39(9): 1026-1035. |
21 | MIYATAKE K, IWASA K, MCNARY S M, et al. Modulation of superficial zone protein/lubricin/PRG4 by kartogenin and transforming growth factor-β1 in surface zone chondrocytes in bovine articular cartilage [J]. Cartilage, 2016, 7(4): 388-397. |
22 | LIU C, LI T, YANG Z, et al. Kartogenin enhanced chondrogenesis in cocultures of chondrocytes and bone mesenchymal stem cells [J]. Tissue Eng Part A, 2018, 24(11/12): 990-1000. |
23 | XU X Q, SHI D Q, SHEN Y S, et al. Full-thickness cartilage defects are repaired via a microfracture technique and intraarticular injection of the small-molecule compound kartogenin [J]. Arthritis Res Ther, 2015, 17: 20. |
24 | LI J M, LEE W Y W, WU T Y, et al. Near-infrared light-triggered release of small molecules for controlled differentiation and long-term tracking of stem cells in vivo using upconversion nanoparticles [J]. Biomaterials, 2016, 110: 1-10. |
25 | FAN W, LI J, YUAN L, et al. Intra-articular injection of kartogenin-conjugated polyurethane nanoparticles attenuates the progression of osteoarthritis [J]. Drug Deliv, 2018, 25(1): 1004-1012. |
26 | YANG W, ZHENG Y, CHEN J, et al. Preparation and characterization of the collagen/cellulose nanocrystals/USPIO scaffolds loaded kartogenin for cartilage regeneration [J]. Mater Sci Eng C Mater Biol Appl, 2019, 99: 1362-1373. |
27 | KANG M L, KIM J E, IM G I. Thermoresponsive nanospheres with independent dual drug release profiles for the treatment of osteoarthritis [J]. Acta Biomater, 2016, 39: 65-78. |
28 | SILVA J C, UDANGAWA R N, CHEN J L, et al. Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering [J]. Mat Sci Eng C Mater, 2020, 107: 110291. |
29 | MASSARO M, BUSCEMI G, ARISTA L, et al. Multifunctional carrier based on halloysite/laponite hybrid hydrogel for kartogenin delivery [J]. Acs Med Chem Lett,2019, 10(4): 419-424. |
30 | KANG M L, KO J Y, KIM J E, et al. Intra-articular delivery of kartogenin-conjugated chitosan nano/microparticles for cartilage regeneration [J]. Biomaterials, 2014, 35(37): 9984-9994. |
31 | HU Q, DING B, YAN X, et al. Polyethylene glycol modified PAMAM dendrimer delivery of kartogenin to induce chondrogenic differentiation of mesenchymal stem cells [J].Nanomed Nanotechnol Biol Med,2017, 13(7): 2189-2198. |
32 | KANG M L, SE-YEONG J, IM G I. Hyaluronic acid hydrogel functionalized with self-assembled micelles of amphiphilic PEGylated kartogenin for the treatment of osteoarthritis [J]. Osteoarthr Cartil, 2017, 25:S25. |
33 | MAUDENS P, SEEMAYER C A, THAUVIN C, et al. Osteoarthritis therapy:nanocrystal-polymer particles: extended delivery carriers for osteoarthritis treatment(small 8/2018) [J]. Small, 2018, 14(8):1870024. |
34 | SUN X M, WANG J H, WANG Y Y, et al. Collagen-based porous scaffolds containing PLGA microspheres for controlled kartogenin release in cartilage tissue engineering [J]. Artif Cells Nanomed Biotechnol, 2018, 46(8): 1957-1966. |
35 | WANG J H, WANG Y Y, SUN X M, et al. Biomimetic cartilage scaffold with orientated porous structure of two factors for cartilage repair of knee osteoarthritis [J]. Artif Cells Nanomed and Biotechnol, 2019, 47(1): 1710-1721. |
36 | LI X, DING J, ZHANG Z, et al. Kartogenin-incorporated thermogel supports stem cells for significant cartilage regeneration [J]. ACS Appl Mater Interfaces, 2016, 8(8): 5148-5159. |
37 | WANG S J, QIN J Z, ZHANG T E, et al. Intra-articular injection of kartogenin-incorporated thermogel enhancing osteoarthritis treatment [J]. Front Chem, 2019, 7: 677. |
38 | LEE S S, CHOI G E, LEE H J, et al. Layered double hydroxide and polypeptide thermogel nanocomposite system for chondrogenic differentiation of stem cells [J]. Acs Appl Mater Interfaces, 2017, 9(49): 42668-42675. |
39 | LIU X, CHEN Y, MAO A S, et al. Molecular recognition-directed site-specific release of stem cell differentiation inducers for enhanced joint repair [J]. Biomaterials, 2020, 232: 119644. |
40 | XUAN H, HU H, GENG C, et al. Biofunctionalized chondrogenic shape-memory ternary scaffolds for efficient cell-free cartilage regeneration [J]. Acta Biomater, 2020, 105: 97-110. |
41 | CHEN C, HUANG K, ZHU J, et al. A novel elastic and controlled-release poly(ether-ester-urethane)urea scaffold for cartilage regeneration [J]. J Mater Chem B, 2020, 8(18): 4106-4121. |
[1] | Lijun YAN,Shengquan TONG,Jing LIU,Dongmei GAO,Nanfang CHEN,Jie HU. Therapeutic effect of total glucosides of paeony in model rats with rheumatoid arthritis by mediating TLR4/NF-κB signaling pathway and its mechanisim [J]. Journal of Jilin University(Medicine Edition), 2021, 47(2): 390-396. |
[2] | GONG Xilong, YANG Guang, SUN Hongbin, WANG Yueshu. Analysis of clinical effect of surgical treatment in patients with multiple tophi in extremities: A report of 23 cases [J]. Journal of Jilin University Medicine Edition, 2018, 44(02): 394-397. |
[3] | WANG Wei-shan,SHI Chen-hui,LI Chang-jun,ZHANG Zhen-dong,CHEN An-min,GUO Feng-jing. Detection of uPA,MMP-3,MMP-9,MMP-13,and MMP-14 expression levels in synovial fluid of OA patients before and after arthroscopic debridement and its significance [J]. Journal of Jilin University Medicine Edition, 2014, 40(03): 650-654. |
[4] | ZHOU Guang-yu, GUO Jia-long, BI Li-qi. Interleukin-6 levels in serum and synovialfluid in patients with arthritis [J]. J4, 2004, 30(5): 772-774. |
[5] | YUAN Sheng, SHAO Shuyan, YANG Guang, ZHANG Ju. A case report of gout arthritis in second metatarsophalangeal joint complicated with congenital brachydactyly [J]. Journal of Jilin University Medicine Edition, 2016, 42(03): 574-576. |
[6] | MU Chuanxian, LIU Guoling. Intervention effect of tripterygium hypoglaucum hutch on immune function of rats with collagen induced arthritis and its mechanism [J]. Journal of Jilin University Medicine Edition, 2016, 42(01): 64-69. |