1 |
TIMMS R T, MENZIES S A, TCHASOVNIKAROVA I A, et al. Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens[J]. Nat Commun, 2016, 7: 11786.
|
2 |
GEORGE G, NINAGAWA S, YAGI H, et al. EDEM2 stably disulfide-bonded to TXNDC11 catalyzes the first mannose trimming step in mammalian glycoprotein ERAD[J]. Elife, 2020, 9: e53455.
|
3 |
WANG D T, DE DEKEN X, MILENKOVIC M,et al. Identification of a novel partner of duox: EFP1, a thioredoxin-related protein[J]. J Biol Chem, 2005, 280(4): 3096-3103.
|
4 |
CHO S Y, KIM S, SON M J, et al. Clinical significance of the thioredoxin system and thioredoxin-domain-containing protein family in hepatocellular carcinoma[J]. Dig Dis Sci, 2019, 64(1): 123-136.
|
5 |
ZHANG X, WANG Y D. Identification of hub genes and key pathways associated with the progression of gynecological cancer[J]. Oncol Lett, 2019, 18(6): 6516-6524.
|
6 |
RHODES D R, YU J J, SHANKER K, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform[J]. Neoplasia, 2004, 6(1): 1-6.
|
7 |
RHODES D R, KALYANA-SUNDARAM S, MAHAVISNO V, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18, 000 cancer gene expression profiles[J]. Neoplasia, 2007, 9(2): 166-180.
|
8 |
CHANDRASHEKAR D S, BASHEL B, BALASUBRAMANYA S A H, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses[J]. Neoplasia, 2017, 19(8): 649-658.
|
9 |
TANG Z F, LI C W, KANG B X, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102.
|
10 |
GYŐRFFY B, SUROWIAK P, BUDCZIES J, et al. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer[J]. PLoS One, 2013, 8(12): e82241.
|
11 |
GYORFFY B, LÁNCZKY A, SZÁLLÁSI Z. Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients[J]. Endocr Relat Cancer, 2012, 19(2): 197-208.
|
12 |
SZÁSZ A M, LÁNCZKY A, NAGY Á, et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1 065 patients[J]. Oncotarget, 2016, 7(31): 49322-49333.
|
13 |
GYÖRFFY B, LANCZKY A, EKLUND A C, et al. An online survival analysis tool to rapidly assess the effect of 22, 277 genes on breast cancer prognosis using microarray data of 1, 809 patients[J]. Breast Cancer Res Treat, 2010, 123(3): 725-731.
|
14 |
LI T W, FU J X, ZENG Z X, et al. TIMER 2.0 for analysis of tumor-infiltrating immune cells[J]. Nucleic Acids Res, 2020, 48(W1): W509-W514.
|
15 |
LI S W, DONG C L, CHEN J Y, et al. Identification of an immune checkpoint gene signature that accurately predicts prognosis and immunotherapy response in endometrial carcinoma[J]. Aging (Albany NY), 2021, 13(12): 16696-16712.
|
16 |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer Statistics [J]. CA Cancer J Clin,2021,71(1): 7-33.
|
17 |
LIAO R, MA Q Z, ZHOU C Y, et al. Identification of biomarkers related to Tumor-Infiltrating Lymphocytes (TILs) infiltration with gene co-expression network in colorectal cancer[J]. Bioengineered, 2021, 12(1): 1676-1688.
|
18 |
WEI W Q, ZENG H M, ZHENG R S, et al. Cancer registration in China and its role in cancer prevention and control[J]. Lancet Oncol, 2020, 21(7): e342-e349.
|
19 |
GIRALDO N A, BECHT E, VANO Y, et al. The immune response in cancer: from immunology to pathology to immunotherapy[J]. Virchows Arch, 2015, 467(2): 127-135.
|
20 |
MARIN-ACEVEDO J A, KIMBROUGH E O, MANOCHAKIAN R, et al. Immunotherapies targeting stimulatory pathways and beyond[J]. J Hematol Oncol, 2021, 14(1): 78.
|
21 |
HAANEN J B A G, ROBERT C. Immune checkpoint inhibitors[J]. Prog Tumor Res, 2015, 42: 55-66.
|
22 |
PORTA C, COSMAI L, RIZZO M. Individualizing renal cell carcinoma treatment through biomarkers discovery in the era of immune checkpoint inhibitors: where do we stand? [J]. Curr Opin Urol, 2021,31(3): 236-241.
|
23 |
WEI G G, ZHANG H L, ZHAO H P, et al. Emerging immune checkpoints in the tumor microenvironment: Implications for cancer immunotherapy[J]. Cancer Lett, 2021, 511: 68-76.
|
24 |
SHENKMAN M, RON E, YEHUDA R, et al. Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates[J]. Commun Biol, 2018, 1: 172.
|
25 |
ROMA-RODRIGUES C, MENDES R, BAPTISTA P,et al. Targeting tumor microenvironment for cancer therapy[J]. Int J Mol Sci, 2019, 20(4): 840.
|
26 |
VITALE I, MANIC G, COUSSENS L M, et al. Macrophages and metabolism in the tumor microenvironment[J]. Cell Metab, 2019, 30(1): 36-50.
|
27 |
MEURETTE O, MEHLEN P. Notch signaling in the tumor microenvironment[J]. Cancer Cell, 2018, 34(4): 536-548.
|
28 |
HINSHAW D C, SHEVDE L A. The tumor microenvironment innately modulates cancer progression[J]. Cancer Res, 2019, 79(18): 4557-4566.
|
29 |
PARKIN J, COHEN B. An overview of the immune system[J]. Lancet, 2001, 357(9270): 1777-1789.
|
30 |
周彦彤,李春晓,王劲松,等.单细胞转录组测序分析结肠癌微环境中免疫细胞亚群与癌症进程的关系[J]. 解放军医学杂志,2021,46(7): 692-701.
|
31 |
王丽萍. 非小细胞肺癌的靶向和免疫治疗进展[J].郑州大学学报(医学版),2020,55(2): 176-182.
|
32 |
RILEY R S, JUNE C H, LANGER R, et al. Delivery technologies for cancer immunotherapy[J]. Nat Rev Drug Discov, 2019, 18(3): 175-196.
|
33 |
BULK JVAN DEN, VERDEGAAL E M, DE MIRANDA N F. Cancer immunotherapy: broadening the scope of targetable tumours[J]. Open Biol, 2018, 8(6): 180037.
|
34 |
LI B, CHAN H L, CHEN P P. Immune checkpoint inhibitors: basics and challenges[J]. Curr Med Chem, 2019, 26(17): 3009-3025.
|