Journal of Jilin University(Medicine Edition) ›› 2022, Vol. 48 ›› Issue (1): 241-248.doi: 10.13481/j.1671-587X.20220131
• Review • Previous Articles Next Articles
Received:
2020-12-10
Online:
2022-01-28
Published:
2022-01-17
CLC Number:
1 | NANDAKUMAR S K, ULIRSCH J C, SANKARAN V G.Advances in understanding erythropoiesis: evolving perspectives[J]. Br J Haematol, 2016,173(2): 206-218. |
2 | ROMERO Z, DEWITT M, WALTERS M C. Promise of gene therapy to treat sickle cell disease[J]. Expert Opin Biol Ther, 2018, 18(11): 1123-1136. |
3 | SANKARAN V G, WEISS M J. Anemia: progress in molecular mechanisms and therapies[J]. Nat Med, 2015, 21(3): 221-230. |
4 | ALEXANDROS M, ELEFTHERIA H, IOANNIS P, et al. 2017 Clinical trials update in new treatments of beta-thalassemia [J]. Am J Hematol, 2016, 91(11): 1135-1145 . |
5 | WILSON R F. The death of Jesse Gelsinger: new evidence of the influence of money and prestige in human research[J]. Am J Law Med, 2010, 36(2/3): 295-325. |
6 | SCHAEFER K A, WU W H, COLGAN D F, et al. Unexpected mutations after CRISPR-Cas9 editing in vivo [J]. Nat Methods, 2017, 14(6): 547-548. |
7 | ZSCHALER J, SCHLORKE D, ARNHOLD J. Differences in innate immune response between man and mouse[J]. Crit Rev Immunol, 2014, 34(5): 433-454. |
8 | BOSMA G C, CUSTER R P, BOSMA M J. A severe combined immunodeficiency mutation in the mouse[J]. Nature, 1983, 301(5900): 527-530. |
9 | MOSIER D E, GULIZIA R J, BAIRD S M, et al. Transfer of a functional human immune system to mice with severe combined immunodeficiency[J]. Nature, 1988, 335(6187): 256-259. |
10 | MCCUNE J M, NAMIKAWA R, KANESHIMA H, et al. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function[J]. Science, 1988, 241(4873): 1632-1639. |
11 | LAPIDOT T, PFLUMIO F, DOEDENS M, et al. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice[J]. Science, 1992, 255(5048): 1137-1141. |
12 | GREINER D L, HESSELTON R A, SHULTZ L D. SCID mouse models of human stem cell engraftment[J]. Stem Cells, 1998, 16(3): 166-177. |
13 | FULOP G M, PHILLIPS R A. The scid mutation in mice causes a general defect in DNA repair[J]. Nature, 1990, 347(6292): 479-482. |
14 | SHULTZ L D, SCHWEITZER P A, CHRISTIANSON S W, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice[J]. J Immunol, 1995, 154(1): 180-191. |
15 | HESSELTON R M, GREINER D L, MORDES J P, et al. High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice[J]. J Infect Dis, 1995, 172(4): 974-982. |
16 | CHRISTIANSON S W, GREINER D L, SCHWEITZER I B, et al. Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human T-lymphoblastoid leukemia cells in C57BL/6J-scid mice and in C57BL/6J-scid bg mice[J]. Cell Immunol, 1996, 171(2): 186-199. |
17 | LOWRY P A, SHULTZ L D, GREINER D L, et al. Improved engraftment of human cord blood stem cells in NOD/LtSz-scid/scid mice after irradiation or multiple-day injections into unirradiated recipients[J]. Biol Blood Marrow Transplant, 1996, 2(1): 15-23. |
18 | PFLUMIO F, IZAC B, KATZ A, et al. Phenotype and function of human hematopoietic cells engrafting immune- deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells[J]. Blood, 1996, 88(10): 3731-3740. |
19 | ITO M, HIRAMATSU H, KOBAYASHI K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells[J]. Blood, 2002, 100(9): 3175-3182. |
20 | CAO X, SHORES E W, HU-LI J, et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain[J]. Immunity, 1995, 2(3): 223-238. |
21 | WATANABE Y, TAKAHASHI T, OKAJIMA A, et al.The analysis of the functions of human B and T cells in humanized NOD/Shi-scid/gammac(null) (NOG) mice (hu-HSC NOG mice)[J].Int Immunol,2009, 21(7): 843-858. |
22 | HALKIAS J, YEN B, TAYLOR K T, et al. Conserved and divergent aspects of human T-cell development and migration in humanized mice[J]. Immunol Cell Biol, 2015, 93(8): 716-726. |
23 | LAN P, TONOMURA N, SHIMIZU A, et al. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation[J]. Blood, 2006, 108(2): 487-492. |
24 | HU Z, NVAN ROOIJEN, YANG Y G. Macrophages prevent human red blood cell reconstitution in immunodeficient mice[J]. Blood, 2011, 118(22): 5938-5946. |
25 | CHEN Q, AMALADOSS A, YE W, et al. Human natural killer cells control Plasmodium falciparum infection by eliminating infected red blood cells[J]. PNAS, 2014, 111(4): 1479-1484. |
26 | AMALADOSS A, CHEN Q, LIU M, et al. De novo generated human red blood cells in humanized mice support plasmodium falciparum infection[J]. PLoS One, 2015, 10(6): e0129825. |
27 | WIJAYALATH W, MAJJI S, VILLASANTE E F, et al. Humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice sustain the complex vertebrate life cycle of Plasmodium falciparum malaria[J]. Malar J, 2014, 13(1): 1-14. |
28 | CHEN B, FAN W, ZOU J, et al. Complement depletion improves human red blood cell reconstitution in immunodeficient mice[J]. Stem Cell Reports, 2017, 9(4): 1034-1042. |
29 | ZIPFEL P F, SKERKA C. Complement regulators and inhibitory proteins[J]. Nat Rev Immunol, 2009, 9(10): 729-740. |
30 | OLDENBORG P A, ZHELEZNYAK A, FANG Y F, et al. Role of CD47 as a marker of self on red blood cells[J]. Science, 2000, 288(5473): 2051-2054. |
31 | IDE K, WANG H, TAHARA H, et al. Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages[J]. PNAS, 2007, 104(12): 5062-5066. |
32 | TAKENAKA K, PRASOLAVA T K, WANG J C,et al.Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells[J]. Nat Immunol, 2007, 8(12): 1313-1323. |
33 | YU Z, CHEN T, CAO X. Neutrophil sensing of cytoplasmic, pathogenic DNA in a cGAS-STING-independent manner[J].Cell Mol Immunol,2016,13(4): 411-414. |
34 | RAJENDRAN P, RENGARAJAN T, THANGAVEL J,et al. The vascular endothelium and human diseases[J]. Int J Biol Sci, 2013, 9(10): 1057-1069. |
35 | JI S, DONG W, QI Y, et al. Phagocytosis by endothelial cells inhibits procoagulant activity of platelets of essential thrombocythemia in vitro [J]. J Thromb Haemost, 2020, 18(1): 222-233. |
36 | JOURDE-CHICHE N, FAKHOURI F, DOU L, et al. Endothelium structure and function in kidney health and disease[J]. Nat Rev Nephrol, 2019, 15(2): 87-108. |
37 | AIRD W C. Phenotypic heterogeneity of the endothelium[J]. Circ Res, 2007, 100(2): 158-173. |
38 | PENG Q, YEH H, WEI L, et al. Mechanisms of xenogeneic baboon platelet aggregation and phagocytosis by porcine liver sinusoidal endothelial cells[J]. PLoS One, 2012, 7(10): e47273. |
39 | EL-ASSAAD F, WHEWAY J, MITCHELL A J,et al.Cytoadherence of Plasmodium berghei-infected red blood cells to murine brain and lung microvascular endothelial cells in vitro [J]. Infect Immun, 2013, 81(11): 3984-3991. |
40 | ZHANG J, ABIRAMAN K, JONES S M, et al. Regulation of active ICAM-4 on normal and sickle cell disease RBCs via AKAPs is revealed by AFM[J]. Biophys J, 2017, 112(1): 143-152. |
41 | MACIASZEK J L, ANDEMARIAM B, ABIRAMAN K, et al. AKAP-dependent modulation of BCAM/Lu adhesion on normal and sickle cell disease RBCs revealed by force nanoscopy[J]. Biophys J, 2014, 106(6): 1258-1267. |
42 | MOTEGI S, LEITNER W W, LU M, et al. Pericyte-derived MFG-E8 regulates pathologic angiogenesis[J]. Arterioscler Thromb Vasc Biol, 2011, 31(9): 2024-2034. |
43 | LAUF P K. Eryptotic red blood cell adhesion to vascular endothelium: CXCL16/SR-PSOX, a pathological amplifier. Focus on “Dynamic adhesion of eryptotic erythrocytes to endothelial cells via CXCL16/ SR-PSOX”[J]. Am J Physiol Cell Physiol, 2012, 302(4): C642-C643. |
44 | WHITE J C, PAWAR A, FU G, et al. TR2/TR4 overexpression in a humanized sickle cell disease mouse model decreases RBC adhesion to VCAM-1[J]. Blood Cells Mol Dis, 2015, 55(4): 316-317. |
45 | GOOD M F, HAWKES M T, YANOW S K. Humanized mouse models to study cell-mediated immune responses to liver-stage malaria vaccines[J]. Trends Parasitol, 2015, 31(11): 583-594. |
46 | CUI L, LINDNER S, MIAO J. Modeling malaria in humanized mice: opportunities and challenges [J].Ann N Y Acad Sci, 2015, 1342(1): 29-36. |