Journal of Jilin University(Medicine Edition) ›› 2022, Vol. 48 ›› Issue (1): 256-264.doi: 10.13481/j.1671-587X.20220133
• Review • Previous Articles Next Articles
Received:
2021-08-17
Online:
2022-01-28
Published:
2022-01-17
CLC Number:
1 | FRISOLI M L, ESSIEN K, HARRIS J E. Vitiligo: mechanisms of pathogenesis and treatment[J]. Annu Rev Immunol, 2020, 38: 621-648. |
2 | NARAYAN V S, UITENTUIS S E, LUITEN R M, et al. Patients’perspective on current treatments and demand for novel treatments in vitiligo[J]. J Eur Acad Dermatol Venereol, 2021, 35(3): 744-748. |
3 | NIU C, AISA H A. Upregulation of melanogenesis and tyrosinase activity: potential agents for vitiligo[J]. Molecules, 2017, 22(8): E1303. |
4 | CHEN J R, LI S L, LI C Y. Mechanisms of melanocyte death in vitiligo[J]. Med Res Rev, 2021, 41(2): 1138-1166. |
5 | BOUKHEDOUNI N, MARTINS C, DARRIGADE A S,et al. Type-1 cytokines regulate MMP-9 production and E-cadherin disruption to promote melanocyte loss in vitiligo[J].JCI Insight,2020,5(11):e133772. |
6 | WU X Y, YANG Y W, XIANG L H, et al. The fate of melanocyte: Mechanisms of cell death in vitiligo[J]. Pigment Cell Melanoma Res, 2021, 34(2): 256-267. |
7 | BERGQVIST C, EZZEDINE K. Vitiligo: a focus on pathogenesis and its therapeutic implications[J]. J Dermatol, 2021, 48(3): 252-270. |
8 | SINGH M, KOTNIS A, JADEJA S D, et al. Cytokines: the Yin and Yang of vitiligo pathogenesis[J]. Expert Rev Clin Immunol, 2019, 15(2): 177-188. |
9 | FRĄCZEK A, OWCZARCZYK-SACZONEK A, PLACEK W. The role of TRM cells in the pathogenesis of vitiligo-A review of the current state-of-the-art[J]. Int J Mol Sci, 2020, 21(10): E3552. |
10 | SENESCHAL J, BONIFACE K, D’ARINO A, et al. An update on vitiligo pathogenesis[J]. Pigment Cell Melanoma Res, 2021, 34(2): 236-243. |
11 | SEARLE T, AL-NIAIMI F, ALI F R. Vitiligo: an update on systemic treatments[J]. Clin Exp Dermatol, 2021, 46(2): 248-258. |
12 | LI S L, ZHU G N, YANG Y Q, et al. Oxidative stress drives CD8+ T-cell skin trafficking in patients with vitiligo through CXCL16 upregulation by activating the unfolded protein response in keratinocytes[J]. J Allergy Clin Immunol, 2017, 140(1): 177-189.e9. |
13 | ABDALLAH M, EL-MOFTY M, ANBAR T, et al. CXCL-10 and Interleukin-6 are reliable serum markers for vitiligo activity: a multicenter cross-sectional study[J]. Pigment Cell Melanoma Res, 2018, 31(2): 330-336. |
14 | RICHMOND J M, STRASSNER J P, RASHIGHI M, et al. Resident memory and recirculating memory T cells cooperate to maintain disease in a mouse model of vitiligo[J]. J Invest Dermatol, 2019, 139(4): 769-778. |
15 | JAENISCH R, YOUNG R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming[J]. Cell, 2008, 132(4): 567-582. |
16 | 黄梁江, 陈 红. 干细胞的临床研究与转化[J]. 内科急危重症杂志, 2020, 26(2): 104-108. |
17 | PRAVEEN KUMAR L, KANDOI S, MISRA R,et al. The mesenchymal stem cell secretome: a new paradigm towards cell-free therapeutic mode in regenerative medicine[J]. Cytokine Growth Factor Rev, 2019, 46: 1-9. |
18 | BOCHON B, KOZUBSKA M, SURYGAŁA G, et al. Mesenchymal stem cells-potential applications in kidney diseases[J]. Int J Mol Sci, 2019, 20(10): 2462. |
19 | OWCZARCZYK-SACZONEK A, WOCIÓR A, PLACEK W, et al. The use of adipose-derived stem cells in selected skin diseases (vitiligo, alopecia, and nonhealing wounds)[J]. Stem Cells Int, 2017, 2017: 4740709. |
20 | ZHANG P, KLING R E, RAVURI S K, et al. A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration[J]. J Tissue Eng, 2014, 5: 2041731414556850. |
21 | ANDERI R, MAKDISSY N, AZAR A, et al. Cellular therapy with human autologous adipose-derived adult cells of stromal vascular fraction for alopecia areata[J]. Stem Cell Res Ther, 2018, 9(1): 141. |
22 | PAGANELLI A, KALECI S, BENASSI L, et al. Mesenchymal stem cells and psoriasis: State of the art and future perspectives[J].Dermatol Ther,2020,33(2):e13247. |
23 | HEO J R, HWANG K A, KIM S U, et al. A potential therapy using engineered stem cells prevented malignant melanoma in cellular and xenograft mouse models[J]. Cancer Res Treat, 2019, 51(2): 797-811. |
24 | CIPRIANI P, DI BENEDETTO P, LIAKOULI V,et al.Mesenchymal stem cells (MSCs) from scleroderma patients (SSc) preserve their immunomodulatory properties although senescent and normally induce T regulatory cells (Tregs) with a functional phenotype: implications for cellular-based therapy[J]. Clin Exp Immunol, 2013, 173(2): 195-206. |
25 | XU J Y. Therapeutic applications of mesenchymal stem cells for systemic lupus erythematosus[J]. Adv Exp Med Biol, 2018, 1089: 73-85. |
26 | YANG K, QIU W, GU P R, et al. Regeneration of mouse skin melanocyte stem cells in vivo and in vitro [J]. Methods Mol Biol, 2019, 1879: 267-284. |
27 | LI H R, HOU L. Regulation of melanocyte stem cell behavior by the niche microenvironment[J]. Pigment Cell Melanoma Res, 2018, 31(5): 556-569. |
28 | LEE J H, FISHER D E. Melanocyte stem cells as potential therapeutics in skin disorders[J]. Expert Opin Biol Ther, 2014, 14(11): 1569-1579. |
29 | LEI T C, HEARING V J. Deciphering skin re-pigmentation patterns in vitiligo: an update on the cellular and molecular events involved[J]. Chin Med J (Engl), 2020, 133(10): 1231-1238. |
30 | GUO H Y, XING Y Z, LIU Y X, et al. Wnt/β-catenin signaling pathway activates melanocyte stem cells in vitro and in vivo [J]. J Dermatol Sci, 2016, 83(1): 45-51. |
31 | INFARINATO N R, STEWART K S, YANG Y H, et al. BMP signaling: at the gate between activated melanocyte stem cells and differentiation[J]. Genes Dev, 2020, 34(23/24): 1713-1734. |
32 | REGAZZETTI C, JOLY F, MARTY C, et al. Transcriptional analysis of vitiligo skin reveals the alteration of WNT pathway: a promising target for repigmenting vitiligo patients[J]. J Invest Dermatol, 2015, 135(12): 3105-3114. |
33 | YARDMAN-FRANK J M, FISHER D E. Skin pigmentation and its control: From ultraviolet radiation to stem cells[J]. Exp Dermatol, 2021, 30(4): 560-571. |
34 | OCAMPO-GARZA J, SALINAS-SANTANDER M, WELSH O, et al. Expression of melanocortin 1 receptor before and after narrowband UVB phototherapy treatment in patients with stable vitiligo: a prospective study[J]. Exp Ther Med, 2020, 19(3): 1649-1654. |
35 | BIRLEA S A, GOLDSTEIN N B, NORRIS D A. Repigmentation through melanocyte regeneration in vitiligo[J]. Dermatol Clin, 2017, 35(2): 205-218. |
36 | OKAMOTO N, AOTO T, UHARA H, et al. A melanocyte: melanoma precursor niche in sweat glands of volar skin[J]. Pigment Cell Melanoma Res, 2014, 27(6): 1039-1050. |
37 | FRIEDENSTEIN A J. Precursor cells of mechanocytes[M]//International review of cytology. Amsterdam: Elsevier, 1976: 327-359. |
38 | KESHTKAR S, AZARPIRA N, GHAHREMANI M H. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine[J]. Stem Cell Res Ther, 2018, 9(1): 63. |
39 | MEI X Y, SUN Y, WU Z W, et al. In vitro -induced differentiation of bone marrow mesenchymal stem cells into melanocytes[J]. Cell Biol Int, 2015, 39(7): 824-833. |
40 | ESQUIVEL D, MISHRA R, SRIVASTAVA A. Stem cell therapy offers a possible safe and promising alternative approach for treating vitiligo: a review[J]. Curr Pharm Des, 2020, 26(37): 4815-4821. |
41 | KIM D S, JANG I K, LEE M W, et al. Enhanced immunosuppressive properties of human mesenchymal stem cells primed by interferon-Γ[J]. EBioMedicine, 2018, 28: 261-273. |
42 | LANZA C, MORANDO S, VOCI A, et al. Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo [J]. J Neurochem, 2009, 110(5): 1674-1684. |
43 | ZHANG F, PENG W X, ZHANG J, et al. New strategy of bone marrow mesenchymal stem cells against oxidative stress injury via Nrf2 pathway: oxidative stress preconditioning[J]. J Cell Biochem, 2019, 120(12): 19902-19914. |
44 | ZHU L F, LIN X, ZHI L, et al. Mesenchymal stem cells promote human melanocytes proliferation and resistance to apoptosis through PTEN pathway in vitiligo[J]. Stem Cell Res Ther, 2020, 11(1): 26. |
45 | ZUK P A, ZHU M, MIZUNO H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies[J]. Tissue Eng, 2001, 7(2): 211-228. |
46 | MAZINI L, ROCHETTE L, HAMDAN Y, et al. Skin immunomodulation during regeneration: emerging new targets[J]. J Pers Med, 2021, 11(2): 85. |
47 | HORINOUCHI C D, BARISÓN M J, ROBERT A W, et al. Influence of donor age on the differentiation and division capacity of human adipose-derived stem cells[J]. World J Stem Cells, 2020, 12(12): 1640-1651. |
48 | ZAVALA G, SANDOVAL C, MEZA D, et al. Differentiation of adipose-derived stem cells to functional CD105neg CD73low melanocyte precursors guided by defined culture condition[J]. Stem Cell Res Ther, 2019, 10(1): 249. |
49 | GENTILE P, GARCOVICH S. Adipose-derived mesenchymal stem cells (AD-MSCs) against ultraviolet (UV) radiation effects and the skin photoaging[J]. Biomedicines, 2021, 9(5): 532. |
50 | EL-BADAWY A, AMER M, ABDELBASET R,et al. Adipose stem cells display higher regenerative capacities and more adaptable electro-kinetic properties compared to bone marrow-derived mesenchymal stromal cells[J]. Sci Rep, 2016, 6: 37801. |
51 | KIM J Y, PARK C D, LEE J H, et al. Co-culture of melanocytes with adipose-derived stem cells as a potential substitute for co-culture with keratinocytes[J]. Acta Derm Venereol, 2012, 92(1): 16-23. |
52 |
SALEH A A, ABDEL SALAM O H, METWALLY H G, et al. Comparison treatment of vitiligo by co-culture of melanocytes derived from hair follicle with adipose-derived stem cells with and without NB-UVB[J]. Pigmentary Disorders, 2017, 4(1). DOI:10.4172/2376-0427.1000256 .
doi: 10.4172/2376-0427.1000256 |
53 | VIZOSO F J, EIRO N, CID S, et al. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine[J]. Int J Mol Sci, 2017, 18(9): E1852. |
54 | CHOI E W, SEO M K, WOO E Y, et al. Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts[J]. Exp Dermatol, 2018, 27(10): 1170-1172. |
55 | XU R, GREENING D W, ZHU H J, et al. Extracellular vesicle isolation and characterization:toward clinical application[J].Clin Invest,2016,126(4):1152-1162. |
56 | BELLEI B, MIGLIANO E, TEDESCO M, et al. Adipose tissue-derived extracellular fraction characterization: biological and clinical considerations in regenerative medicine[J]. Stem Cell Res Ther, 2018, 9(1): 207. |
57 | CAI Y, LI J Y, JIA C S, et al. Therapeutic applications of adipose cell-free derivatives: a review[J]. Stem Cell Res Ther, 2020, 11(1): 312. |
58 | BELLEI B, PAPACCIO F, FILONI A, et al. Extracellular fraction of adipose tissue as an innovative regenerative approach for vitiligo treatment[J]. Exp Dermatol, 2019, 28(6): 695-703. |
59 | PAINO F, RICCI G, DE ROSA A, et al. Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes[J]. Eur Cell Mater, 2010, 20: 295-305. |
60 | TSUCHIYAMA K, WAKAO S, KURODA Y, et al. Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts[J]. J Invest Dermatol, 2013, 133(10): 2425-2435. |
61 | YAMAUCHI T, YAMASAKI K, TSUCHIYAMA K, et al. A quantitative analysis of multilineage-differentiating stress-enduring (Muse) cells in human adipose tissue and efficacy of melanocytes induction[J]. J Dermatol Sci, 2017, 86(3): 198-205. |
62 | FANG D, LEISHEAR K, NGUYEN T K, et al. Defining the conditions for the generation of melanocytes from human embryonic stem cells[J]. Stem Cells, 2006, 24(7): 1668-1677. |
63 | WU D C, BOYD A S, WOOD K J. Embryonic stem cell transplantation: potential applicability in cell replacement therapy and regenerative medicine[J]. Front Biosci, 2007, 12: 4525-4535. |
64 | GLEDHILL K, GUO Z Y, UMEGAKI-ARAO N,et al. Melanin transfer in human 3D skin equivalents generated exclusively from induced pluripotent stem cells[J]. PLoS One, 2015, 10(8): e0136713. |
65 | 李遇梅, 张怡萱, 刘莉萍. 诱导性多功能干细胞在皮肤科研究与应用的进展[J]. 中华皮肤科杂志, 2019, 52(7): 445-449. |
66 | 伍婧玥, 李 敏, 王 刚, 等. 毛囊干细胞的应用领域[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(6): 359-363. |
67 | YASHIRO M, MII S, AKI R, et al. From hair to heart: nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells differentiate to beating cardiac muscle cells[J]. Cell Cycle, 2015, 14(14): 2362-2366. |
68 | TOTANI A, AMIN H, BACCHI S, et al. Vitiligo following stem-cell transplant[J]. Bone Marrow Transplant, 2020, 55(2): 332-340. |
69 | SANLI H, AKAY B N, ARAT M, et al. Vitiligo after hematopoietic cell transplantation: six cases and review of the literature[J]. Dermatology, 2008, 216(4): 349-354. |
[1] | SI Henan, ZHONG Shuxia, ZHOU Junfeng, YAO Lei, LIU Yuanyuan, SONG Yang, LI Shanshan. Analysis on clinical characteristics and risk factors of 271 children with vitiligo [J]. Journal of Jilin University Medicine Edition, 2017, 43(01): 147-150. |
[2] | ZHOU Ming-Wei, JIANG Ri-Hua, ZHANG Qi. Therapeutic effect of glycyrrhiza active substance on guinea pig model of vitiligo [J]. J4, 2009, 35(5): 852-856. |
[3] | . Evaluation on curative effect of autologous melanocyte transplantation in treatment of  |patients |withdifferent clinical types of |vitiligo [J]. J4, 2012, 38(6): 1187-1190. |
|