吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (4): 1002-1010.doi: 10.13278/j.cnki.jjuese.201504104

• 地质与资源 • 上一篇    下一篇

陆相湖盆深水块体搬运体优质储层的主控因素以松辽盆地英台地区青山口组为例

陈彬滔1,2, 潘树新1,2, 梁苏娟1, 张庆石3, 刘彩燕1, 王革3   

  1. 1. 中国石油勘探开发研究院西北分院, 兰州 730020;
    2. 中国石油天然气集团公司油藏描述重点实验室, 兰州 730020;
    3. 大庆油田勘探开发研究院, 黑龙江大庆 163000
  • 收稿日期:2014-10-02 发布日期:2015-07-26
  • 作者简介:陈彬滔(1985),男,工程师,主要从事储层地质与储层评价研究,E-mail:tobychencugb@foxmail.com.
  • 基金资助:

    国家自然科学基金项目(41072084);国家"973"计划项目(2007CB209604)

Main Controlling Factors of High Quality Deep-Water Mass Transport Deposits (MTDs) Reservoir in Lacustrine Basin:An Insight of Qingshankou Formation, Yingtai Area, Songliao Basin, Northeast China

Chen Bintao1,2, Pan Shuxin1,2, Liang Sujuan1, Zhang Qingshi3, Liu Caiyan1, Wang Ge3   

  1. 1. Research Institute of Petroleum Exploration & Development-Northwest (NWGI), Petrochina, Lanzhou 730020, China;
    2. Key Laboratory of Reservoir Description, CNPC, Lanzhou 730020, China;
    3. Research Institute of Exploration and Development of Daqing Oilfield Company, Daqing 163000, Heilongjiang, China
  • Received:2014-10-02 Published:2015-07-26

摘要:

深水储层已成为增储上产的重要领域,传统观点认为此类储层物性差,但近年来的勘探实践表明,陆相湖盆深水块体搬运体可形成优质储层,其储层物性甚至优于三角洲前缘.以岩心观察、铸体薄片、扫描电镜、实测孔隙度、地层水有机酸含量、地层超压等资料为基础,对松辽盆地青山口组深水块体搬运体优质储层的主控因素进行了分析.分析认为青山口组深水块体搬运砂岩为高结构成熟度的岩屑长石砂岩,储集空间主要包括原生粒间孔和次生溶蚀孔,碎屑颗粒以点接触为主,方解石胶结物和石英次生加大现象少见.深水块体搬运优质砂岩储层的发育主要受沉积作用和超压旋回的控制.块体搬运作用是形成优质储层的基础,使其继承了三角洲前缘高能环境砂岩的原始孔渗特征;超压抑制破坏性成岩作用是核心,使原始孔隙得以保存、胶结物含量少;有机酸溶蚀是补充,促进次生孔隙发育.青山口组深水块体搬运砂岩呈透镜状分布于源岩内部且具有良好的物性,是有利的勘探目标.

关键词: 松辽盆地, 块体搬运体, 储层物性, 次生孔隙, 超压, 青山口组

Abstract:

Deepwater sandstone, viewed as poor reservoir traditionally, is now the potential target for increasing reserves and production. However, the exploration practice in recent years showed that deepwater mass transport deposits (MTDs) in lacustrine basin can form high-quality reservoir. Its reservoir properties are even superior to a delta front. Based on the data of core observation, casting thin sections, scanning electron microscope, measured porosity, organic acid content of formation water, and formation overpressure, the main controlling factors of high quality deep-water MTDs in Qingshankou Formation, Yingtai area, Songliao basin have been analyzed. According to the analysis, it can be concluded that MTDs sandstone of Qingshankou Formation is debris-feldspar sandstone with high texture maturity, where the reservoir space is dominated by primary intergranular pores and secondary dissolution pores, and the detrital grains are dominated by point-contacted with low calcite cement and quartz overgrown. The development of a good deepwater sandstone reservoir is controlled by sedimentary process and overpressure cycles. Sedimentary process of MTDs is the foundation, which makes the deepwater sandstone inherit the primary characteristics of porosity and permeability of sandstone in delta front (deposited in high energy environment). Inhibition of destructive diagenesis caused by overpressure is the core factor, which can preserve the primary pores and lead to a low content of cement. Organic acid dissolution can be a supplement to promote the development of secondary pores. MTDs deepwater sandstone of Qingshankou Formation is distributed inside the source rock as lenticulars with good physical properties, which can be treated as favorable exploration targets.

Key words: Songliao basin, mass transport deposits(MTDs), reservoir properties, secondary porosity, overpressure, Qingshankou Formation

中图分类号: 

  • TE122

[1] Moscardelli L, Wood L, Mann P. Mass-Transport Complexes and Associated Processes in the Offshore Area of Trinidad and Venezuela[J]. AAPG Bulletin, 2006, 90(7): 1059-1088.

[2] Shanmugam G. Transport Mechanisms of Sand in Deep-Marine Environments: Insights Based on Laboratory Experiments-Discussion[J]. Journal of Sedimentary Research, 2011, 81(11): 841.

[3] Artoni A, Bernini M, Papani G, et al. Mass-Transport Deposits in Confined Wedge-Top Basins: Surficial Processes Shaping the Messinian Orogenic Wedge of Northern Apennine of Italy[J]. Italian Journal of Geosciences, 2010, 129(1): 101-118.

[4] 李磊, 王英民, 张莲美, 等. 块体搬运复合体的识别、演化及其油气勘探意义[J]. 沉积学报, 2010, 28(1): 76-82. Li Lei, Wang Yingmin, Zhang Lianmei, et al. Identification and Evolution of Mass Transport Complexes and Its Significance for Oil and Gas Exploration[J]. Acta Sedimentologica Sinica, 2010, 28(1): 76-82.

[5] Weimer P, Slatt R M. Petroleum Systems of Deepwater Settings[M].Tulsa: AAPG/Datapages, 2007.

[6] 王大伟, 吴时国, 吕福亮, 等. 南海深水块体搬运沉积体系及其油气勘探意义[J]. 中国石油大学学报: 自然科学版, 2011, 35(5): 14-19. Wang Dawei, Wu Shiguo, Lü Fuliang, et al. Mass Transport Deposits and Its Significance for Oil & Gas Exploration in Deep-Water Regions of South China Sea[J]. Journal of China University of Petroleum: Edition of Natural Science, 2011, 35(5): 14-19.

[7] Ogiesoba O,Hammes U.Seismic Interpretation of Mass-Transport Deposits Within the Upper Oligocene Frio Formation, South Texas Gulf Coast[J]. AAPG Bulletin, 2012, 96(5): 845-68.

[8] 陈彬滔, 于兴河, 王天奇, 等. 岱海湖盆沿坡流与顺坡流相互作用的沉积响应[J]. 地球科学: 中国地质大学学报, 2014, 39(4): 399-410. Chen Bintao, Yu Xinghe, Wang Tianqi, et al. Sedimentary Response to Interaction Between Alongslope and Downslope Currents in Daihai Lake, North China[J]. Earth Science: Journal of China University of Geosciences, 2014, 39(4): 399-410.

[9] Jackson C A-L. Three-Dimensional Seismic Analysis of Megaclast Deformation Within a Mass Transport Deposit: Implications for Debris Flow Kinematics[J]. Geology, 2011, 39(3): 203-206.

[10] 翟光明, 王志武. 中国石油地质志: 卷2[M]. 北京:石油工业出版社, 1993: 55-305. Zhai Guangming, Wang Zhiwu. Petroleum Geology of China:Vol 2[M]. Beijing: Petroleum Industry Press, 1993: 55-305.

[11] 王东坡, 刘招君, 刘立, 等. 松辽盆地演化与海平面升降[M]. 北京:地质出版社, 1994. Wang Dongpo, Liu Zhaojun, Liu Li, et al. Evolution of Songliao Basin and Global Changes of Sea Level[M]. Beijing: Geological Publishing House, 1994.

[12] 潘树新, 郭维华, 马凤良, 等. 松辽盆地榆树水系泉头组-嫩江组沉积相特征及勘探潜力[J]. 新疆石油地质, 2010, 31(1):47-50. Pan Shuxin, Guo Weihua, Ma Fengliang, et al. Sedimentary Facies and Exploratory Potential of Quantou-Nenjiang Formations of Yushu River System in Songliao Basin[J]. Xinjiang Petroleum Geology, 2010, 31(1):47-50.

[13] 邹才能, 薛叔浩, 赵文智, 等. 松辽盆地南部白垩系泉头组嫩江组沉积层序特征与地层-岩性油气藏形成条件[J]. 石油勘探与开发, 2004, 31(2):14-17. Zou Caineng, Xue Shuhao, Zhao Wenzhi, et al. De-positional Sequences and Forming Conditions of the Cretaceous Stratigraphic-Lithologic Reservoirs in the Quantou-Nengjiang Formations, South Songliao Basin[J]. Petroleum Exploration and Development, 2004, 31(2):14-17.

[14] 潘树新. 大型坳陷湖盆深水重力流研究:以松辽盆地青山口组为例. 成都:成都理工大学, 2012. Pan Shuxin. Deep-Water Gravity Deposits in Songliao Terrestrial Basin. Chengdu: Chengdu University of Technology, 2012.

[15] 蔡希源, 辛仁臣. 松辽坳陷深水湖盆层序构成模式对岩性圈闭分布的控制[J]. 石油学报, 2004, 25(5): 6-10. Cai Xiyuan, Xin Renchen. Architectural Model of Sequence Stratigraphy Controlling the Distribution of Litho-Trap in Deep-Water Lake of Songliao Depressive Basin[J]. Acta Petrolei Sinica, 2004, 25(5): 6-10.

[16] 王建功, 王天琦, 张顺, 等. 松辽坳陷盆地水侵期湖底扇沉积特征及地球物理响应[J]. 石油学报, 2009, 30(3): 361-366. Wang Jiangong, Wang Tianqi, Zhang Shun, et al. Sedimentary Characteristics and Geophysical Response of Sublacustrine Fan During Transgress Period in Songliao Basin[J]. Acta Petrolei Sinica, 2009, 30(3): 361-366.

[17] 李胜利, 于兴河, 刘玉梅, 等. 水道加朵体型深水扇形成机制与模式:以白云凹陷荔湾3-1地区珠江组为例[J]. 地学前缘, 2012, 19(2): 32-40. Li Shengli, Yu Xinghe, Liu Yumei, et al. Formation Mechanism and Pattern of Deep-Water Fan with Channel and Lobe: A Case Study of the Zhujiang Formation in Liwan 3-1 Area, Baiyun Depression[J]. Earth Science Frontiers, 2012, 19(2): 32-40.

[18] 郭巍, 李成博, 苏飞. 松辽盆地情南黑帝庙次凹青山口组储层成岩作用研究[J]. 世界地质, 2009, 28(3): 216-225. Guo Wei, Li Chengbo, Su Fei. Research on Reservoir Diagenesis of Qingshankou Formation in Qingnan-Heidimiao Secondary Depression, Songliao Basin[J]. Global Geology, 2009, 28(3): 216-225.

[19] 郑荣才, 马奇科, 杨宝泉, 等. 白云凹陷珠江组深水扇砂岩储层特征及控制因素[J]. 成都理工大学学报: 自然科学版, 2012, 39(5): 456-462. Zheng Rongcai, Ma Qike, Yang Baoquan, et al. Characteristics of Miocene Zhujiang Formation Submarine Fan Sandstone Reservoirs in Baiyun Sag, Pearl River Mouth Basin, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2012, 39(5): 456-462.

[20] 肖丽华, 高煜婷, 田伟志, 等. 超压对碎屑岩机械压实作用的抑制与孔隙度预测[J]. 矿物岩石地球化学通报, 2011, 30(4): 400-406. Xiao Lihua, Gao Yuting, Tian Weizhi, et al. The Retardation of Mechanical Compaction in Clastic Rocks by Overpressure and the Prediction Model for Porosity[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(4): 400-406.

[21] 付广, 王有功, 苏玉平. 用超压释放法确定烃源岩排烃期次: 以古龙凹陷青山口组为例[J]. 新疆石油地质, 2007, 28(5): 538-541. Fu Guang, Wang Yougong, Su Yuping. The Expulsion Hydrocarbon Periods of Source Rock by Release of Overpressure: An Example of Qingshankou Formation in Gulong Sag[J]. Xinjiang Petroleum Geology, 2007, 28(5): 538-541.

[22] 付广, 王有功, 苏玉平. 古龙凹陷青山口组超压源岩天然气扩散速度演化史[J]. 吉林大学学报: 地球科学版, 2007, 37(1): 91-97. Fu Guang, Wang Yougong, Su Yuping. Evolution History of Gas Diffusion Velocity from Overpressured Source Rock of Qingshankou Group (Kqn1) in Gulong Sag[J]. Journal of Jilin University: Earth Science Edition, 2007, 37(1): 91-97.

[23] 雷振宇, 解习农, 孟元林, 等. 松辽盆地齐家古龙三肇凹陷超压对成岩作用的影响[J]. 地球科学: 中国地质大学学报, 2012, 37(4): 833-842. Lei Zhenyu, Xie Xinong, Meng Yuanlin, et al. Effecting of Overpressures on Diagensis in the Qijiagulong-Sanzhao Depression of Songliao Basin[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(4): 833-842.

[24] 雷振宇, 解习农, 黄卫, 等. 松辽盆地齐家古龙凹陷三肇凹陷中浅层异常压力系统特征[J]. 吉林大学学报: 地球科学版, 2012, 42(增刊1): 96-104. Lei Zhenyu, Xie Xinong, Huang Wei, et al. Abnormal Pressure System Characteristics of Mid-Shallow Formation in Qijiagulong-Sanzhao Depression of Songliao Basin, China[J]. Journal of Jilin University: Earth Science Edition, 2012, 42(Sup.1): 96-104.

[25] 黄福堂. 松辽盆地油气水地球化学[M]. 北京:石油工业出版社, 1999. Huang Futang. Oil Gas & Water Geochemistry in Songliao Basin[M]. Beijing: Petroleum Industry Press, 1999.

[26] 朱国华. 碎屑岩储集层孔隙的形成、演化和预测[J]. 沉积学报, 1992, 10(3): 114-123. Zhu Guohua. Origin and Evolution and Prediction of Porosity in Clastic Reservoir Rocks[J]. Acta Sedi-mentologica Sinica, 1992, 10(3): 114-123.

[1] 马国庆, 孟庆发, 黄大年. 基于重力异常的松辽盆地构造特征识别[J]. 吉林大学学报(地球科学版), 2018, 48(2): 507-516.
[2] 蔡来星, 卢双舫, 肖国林, 王蛟, 吴志强, 郭兴伟, 侯方辉. 论优质源储耦合关系的控藏作用:对比松南致密油与松北致密气成藏条件[J]. 吉林大学学报(地球科学版), 2018, 48(1): 15-28.
[3] 刘鑫金, 冯阵东, 李聪, 周艳, 王亚明. 近源湖盆砂砾岩储层次生溶孔成因探讨——以查干凹陷祥6井区为例[J]. 吉林大学学报(地球科学版), 2017, 47(2): 393-404.
[4] 鲍新华, 张宇, 李野, 吴永东, 马丹, 周广慧. 松辽盆地增强型地热系统开发选区评价[J]. 吉林大学学报(地球科学版), 2017, 47(2): 564-572.
[5] 高翔, 刘志宏, 聂志阳, 姚勇, 贾卧, 王超, 宋健. 松辽盆地大庆长垣形成时间的厘定及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 74-83.
[6] 贾珍臻, 林承焰, 任丽华, 董春梅, 宫宝. 苏德尔特油田低渗透凝灰质砂岩成岩作用及储层质量差异性演化[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1624-1636.
[7] 林承焰, 曹铮, 任丽华, 张昌盛, 范瑞峰, 王叶, 邢新亚, 马晓兰. 松辽盆地南部大情字井向斜区葡萄花油层石油富集规律及成藏模式[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1598-1610.
[8] 邱隆伟, 师政, 付大巍, 潘泽浩, 杨生超, 曲长胜. 临南洼陷沙三段孔隙度控制因素分析与定量模型[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1321-1331.
[9] 刘财, 杨宝俊, 冯晅, 单玄龙, 田有, 刘洋, 鹿琪, 刘才华, 杨冬, 王世煜. 论油气资源的多元勘探[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1208-1220.
[10] 温志良, 姜福平, 钟长林, 姜雪飞, 王果谦, 齐岩. 松辽盆地东南隆起超大型油页岩矿床特征及成因[J]. 吉林大学学报(地球科学版), 2016, 46(3): 681-691.
[11] 康健, 韦庆海, 周琳, 高研, 张永刚, 高峰. 利用地震台阵观测资料研究大庆地区深部构造[J]. 吉林大学学报(地球科学版), 2016, 46(3): 900-910.
[12] 修立君, 邵明礼, 唐华风, 董常春, 高有峰. 松辽盆地白垩系营城组火山岩孔缝单元类型和特征[J]. 吉林大学学报(地球科学版), 2016, 46(1): 11-22.
[13] 那金, 许天福, 魏铭聪, 冯波, 鲍新华, 姜雪. 增强地热系统热储层-盐水-CO2相互作用[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1493-1501.
[14] 李正伟, 张延军, 郭亮亮, 金显鹏. 松辽盆地北部干热岩开发水热产出预测[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1189-1197.
[15] 郑玉龙, 陈春瑞, 王佰长, 王占国, 刘胜英, 吴相梅. 松辽盆地北部油页岩资源潜力评价[J]. 吉林大学学报(地球科学版), 2015, 45(3): 683-690.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!