吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (2): 507-516.doi: 10.13278/j.cnki.jjuese.20170252

• 深部地质地球物理 • 上一篇    下一篇

基于重力异常的松辽盆地构造特征识别

马国庆, 孟庆发, 黄大年   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2017-11-21 出版日期:2018-03-26 发布日期:2018-03-26
  • 作者简介:马国庆(1984-),男,副教授,博士,主要从事重磁数据采集、校正与解释技术方面的研究,E-mail:maguoqing@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFC0602203,2017YFC0601606);国家油气重大专项(2016ZX05027-002-003);国家自然科学基金项目(41604098,41404089,41430322)

Structure Identification by Gravity Anomaly in Songliao Basin

Ma Guoqing, Meng Qingfa, Huang Danian   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-11-21 Online:2018-03-26 Published:2018-03-26
  • Supported by:
    Supported by National Key Research and Development Program of China(2017YFC0602203,2017YFC0601606),National Oil and Gas Major Sub Project(2016ZX05027-002-003)and National Natural Science Fundation of China(41604098,41404089,41430322)

摘要: 为了解决构造识别中多个断层不能同时识别倾向的问题,提出了利用断裂构造重力异常水平导数的分布特征实现的倾向成像技术,即断裂水平导数变化率较小的一侧指示断裂的倾向;由此可直接标识出断裂的特征,避免了以往该类方法复杂的运算。将这种技术应用到松辽盆地的实测重力异常的处理中,获得了松辽盆地的构造特征。松辽盆地东西两侧具有明显的重力异常差异,但已有的电法、地震资料难以揭示这种差异的原因。笔者以地震数据为约束,利用重力数据进行松辽盆地地层界面的反演,获得了莫霍面及以下的界面特征;认为松辽盆地重力异常差异的原因是松辽盆地莫霍面下方10 km存在一个界面,且由于太平洋板块的俯冲造成该界面在松辽盆地发生了较大的起伏,从而呈现异常的变化。

关键词: 重力异常, 松辽盆地, 断裂, 界面

Abstract: The authors deduced that the distribution of the horizontal derivative of the gravity anomaly of the fault structure can realize the recognition of the fault tendency, which indicates the tendency of the fracture on the side of the small change rate of the fracture horizontal derivative, so it can directly identify the fracture characteristics and avoid the complicated operation of the previous methods. The technique is applied to the treatment of gravity anomaly in Songliao basin, and the tectonic characteristics of Songliao basin are obtained. There are obvious differences of gravity anomaly between the east and the west of Songliao basin, and the reasons of the difference are difficult to be revealed by electric method and seismic data. The boundary inversion of Songliao basin is conducted by gravity data, and the interface features of Moho surface and below are obtained by using seismic data. It is proved that the difference of gravity anomalies in Songliao basin is caused by the boundary of 10km under Moho in Songliao basin, and the great fluctuation occurs in Songliao basin due to the subduction of the Pacific plate.

Key words: gravity anomaly, Songliao basin, fault, boundary

中图分类号: 

  • P631.1
[1] 曹金华. 松辽盆地综合地球物理剖面地质解释[D].长春:吉林大学,2017. Cao Jinhua. Geological Interpretation of Integrated Geophysical Profile in Songliao Basin, NE China[D].Changchun:Jilin University, 2017.
[2] 侯启军,冯志强,冯子辉.松辽盆地陆相石油地质学[M].北京:石油工业出版社,2009. Hou Qijun, Feng Zhiqiang, Feng Zihui. Petroleum Geology of Continental Facies in Songliao Basin[M].Beijing:Petroleum Industry Press, 2009.
[3] 王金臣. 松辽盆地古中央隆起带基底构造特征研究[D].长春:吉林大学, 2016. Wang Jinchen. Study on the Basement Structure Characteristics of the Paleo Central Uplift Belt[D].Changchun:Jilin University, 2016.
[4] 曹怀仁. 松辽盆地烃源岩形成环境与页岩油地质评价研究[D].北京:中国科学院大学, 2017. Cao Huairen. The Paleo-Environment of Source Rock Formation and Geological Evaluation of Shale Oil in Songliao Basin[D].Beijing:University of Chinese Academy of Sciences, 2017.
[5] Evjen H M. The Place of the Vertical Gradient in Gravitational Interpretations[J].Geophysics, 1936, 1(1):127-136.
[6] Cordell L, Grauch V J S. Mapping Basement Mag-netization Zones from Aeromagnetic Data in the San Juan Basin, New Mexico[J].Seg Technical Program Expanded Abstracts, 1982, 1(1):520.
[7] Cordell L. Gravimetric Expression of Graben Faulting in Santa Fe Country and the Espanola Basin, New Mexico[J].Science, 2014, 192:43-43.
[8] Roest W R, Verhoef J, Pilkington M.Magnetic Inter-pretation Using the 3-D Analytic Signal[J].Geophysics, 1992, 57(1):116-125.
[9] Miller H G, Singh V. Potential Field Tilt:A New Co-ncept for Location of Potential Field Sources[J].Journal of Applied Geophysics, 1994, 32(2):213-217.
[10] Wijns C, Perez C, Kowalczyk P. Theta Map:Edge Detection in Magnetic Data[J].Geophysics, 2005, 70(4):39-43.
[11] Ma Guoqing, Liu Cai, Huang Danian. The Removal of Additional Edges in the Edge Detection of Potential Field Data[J]. Journal of Applied Geophysics, 2015, 114:168-173.
[12] 周帅, 黄大年, 焦健. 基于三维构造张量的位场边界识别滤波器[J].地球物理学报, 2016, 59(10):3847-3858. Zhou Shuai, Huang Danian, Jiao Jian. A Filter to Detect Edge of Potential Field Data Based on Three-Dimensional Structural Tensors[J]. Chinese Journal of Geophysics, 2016, 59(10):3847-3858.
[13] Xu Menglong, Yang Changbao, Wu Yangang, et al. Edge Detection in the Potential Field Using the Correlation Coefficients of Multidirectional Standard Deviations[J]. Applied Geophysics, 2015, 12(1):23-24.
[14] 马国庆.位场(重&磁)及其梯度异常自动解释方法研究[D].长春:吉林大学,2013. Ma Guoqing. The Study on the Automatic Interpretation Methods of Potential Field(Gravity & Magnetic)and Its Gradients[D].Changchun:Jilin University, 2013.
[15] Green R. Accurate Determination of the Dip Angle of a Geological Contact Using the Gravity Method[J].Geophys Prosp, 1976(24):265-272.
[16] Butle D K. Generalized Gravity Gradient Analysis for 2D Inversion[J]. Geophysics, 1995, 60(4):1018-1028.
[17] 魏伟,刘天佑.梯度法解释复杂二维断裂重力异常[J].物探与化探,2005,29(4):347-350. Wei Wei, Liu Tianyou. Interpretation of Complex Two-Dimensional Fault Gravity Anomalies by Gradient Method[J].Geophysical and Geochemical Exploration, 2005, 29(4):347-350.
[18] Cooper G R J. Obtaining Dip and Susceptibility Infor-mation from Euler Deconvolution Using the Hough Transform[J]. Computers and Geosciences, 2006, 32(10):1592-1599.
[19] 高秀鹤,黄大年,孙思源,等. 重力梯度数据协克里金三维反演确定岩脉倾向[J]. 吉林大学学报(地球科学版),2017,47(2):589-596. Gao Xiuhe, Huang Danian, Sun Siyuan, el al. Identify the Dip Angle of the Dipping Dike Model Based on Cokriging Inversion of Gravity Grandient Data[J].Journal of Jilin University(Earth Science Edition), 2017, 47(2):589-596.
[20] 李丽丽,孟令顺,杜晓娟,等.一种断层重力异常定量解释方法[J].石油地球物理勘探,2012,47(4):665-667. Li Lili, Meng Lingshun, Du Xiaojuan, el al. A Quantitative Interpretation Method for Gravity Anomaly of Faults[J]. Oil Geophysical Prospecting, 2012, 47(4):665-667.
[1] 郑国磊, 徐新学, 李世斌, 袁航, 马为, 叶青. 天津市重力数据反演解释[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1221-1230.
[2] 朱晓颖, 杨海, 匡星涛, 彭巍巍, 张洪瑞. 新疆东昆仑-阿尔金地区航磁反映的断裂构造特征[J]. 吉林大学学报(地球科学版), 2018, 48(2): 461-473.
[3] 蔡来星, 卢双舫, 肖国林, 王蛟, 吴志强, 郭兴伟, 侯方辉. 论优质源储耦合关系的控藏作用:对比松南致密油与松北致密气成藏条件[J]. 吉林大学学报(地球科学版), 2018, 48(1): 15-28.
[4] 杨德相, 付广, 孙同文, 李熹微, 姜海燕, 刘滨莹. 油源断裂优势通道输导油气能力综合评价方法及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1678-1686.
[5] 展铭望, 付广, 仇翠莹, 杨在增. 一种新的断裂破坏泥岩盖层程度的综合研究方法[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1687-1694.
[6] 李大俊, 翁爱华, 杨悦, 李斯睿, 李建平, 李世文. 地-井瞬变电磁三维交错网格有限差分正演及响应特性[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1552-1561.
[7] 牛子铖, 柳广第, 国殿斌, 王朋, 张家舲, 赵其磊. 查干凹陷中央构造带不同断阶带原油成熟度特征差异及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1047-1059.
[8] 陈鹏, 单玄龙, 郝国丽, 赵容生, 周健. 长白山仙人桥温泉断裂岩溶复合型地热成因模式[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1236-1246.
[9] 王伟, 付广, 胡欣蕾. 断裂对盖层封气综合能力破坏程度的研究方法及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(3): 685-693.
[10] 张博为, 付广, 张居和, 胡明, 刘峻桥, 王浩然. 油源断裂转换带裂缝发育及其对油气控制作用——以冀中坳陷文安斜坡议论堡地区沙二段为例[J]. 吉林大学学报(地球科学版), 2017, 47(2): 370-381.
[11] 刘锦, 刘正宏, 赵辰, 彭游博, 王楚杰, 杨仲杰, 豆世勇. 辽宁清河断裂以北新太古代变质表壳岩的发现及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(2): 497-510.
[12] 鲍新华, 张宇, 李野, 吴永东, 马丹, 周广慧. 松辽盆地增强型地热系统开发选区评价[J]. 吉林大学学报(地球科学版), 2017, 47(2): 564-572.
[13] 张代磊, 黄大年, 张冲. 基于遗传算法优化的BP神经网络在密度界面反演中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(2): 580-588.
[14] 高翔, 刘志宏, 聂志阳, 姚勇, 贾卧, 王超, 宋健. 松辽盆地大庆长垣形成时间的厘定及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 74-83.
[15] 刘敬寿, 戴俊生, 徐珂, 张艺, 丁文龙. 构造裂缝产状演化规律表征方法及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 84-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!