吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (1): 175-186.doi: 10.13278/j.cnki.jjuese.201601201

• 地质工程与环境工程 • 上一篇    下一篇

多源遥感数据支持下区域滑坡灾害风险评价

彭令1,2, 徐素宁2, 彭军还1   

  1. 1. 中国地质大学(北京)土地科学技术学院, 北京 100083;
    2. 中国地质环境监测院, 北京 100081
  • 收稿日期:2015-04-19 出版日期:2016-01-26 发布日期:2016-01-26
  • 作者简介:彭令(1984),男,在站博士后,主要从事地质灾害与遥感地质方面的研究工作,E-mail:penglmail@126.com
  • 基金资助:

    中国博士后科学基金项目(2014M560103);国家"863"计划项目(2012AA121303);发改委卫星及应用产业发展专项项目(发改办高技[2012]2083号)

Regional Landslide Risk Assessment Using Multi-Source Remote Sensing Data

Peng Ling1,2, Xu Suning2, Peng Junhuan1   

  1. 1. School of Land Science and Technology, China University of Geosciences, Beijing 100083, China;
    2. China Institute of Geo-Environment Monitoring, Beijing 100081, China
  • Received:2015-04-19 Online:2016-01-26 Published:2016-01-26
  • Supported by:

    Supported by the China Postdoctoral Science Foundation Funded Project (2014M560103), the National High-Tech R&D Program of China (2012AA121303), and the Special Project of Satellite and Application of Industry Development (2083[2012], General Office, NDRC)

摘要:

滑坡风险管理是防灾减灾的有效途径之一,而灾害风险评价是风险管理的基础和依据。以三峡库首区为研究区、多源遥感影像为主要数据源,利用立体像对技术及光谱分析等方法快速提取地形地貌、地表覆被、地质及水文条件等滑坡孕灾环境信息,应用随机森林模型分析区域滑坡危险性;采用面向对象方法建立典型承灾体识别规则,快速提取建筑物及交通道路等信息,综合分析滑坡危险性及承灾体信息,以实现区域滑坡灾害风险评价。结果显示:高风险区面积为41 km2,约占研究区面积的9%,主要集中于人口聚集的城镇和交通建设用地等经济价值大的地区。其评价结果与野外实地调查情况基本吻合。

关键词: 滑坡, 危险性, 承灾体, 风险评价, 遥感, 三峡

Abstract:

Landslide risk management is an effective way for disaster prevention and mitigation, in which risk assessment is essential. The head area of the Three Gorges is selected as the study area. Using multi-source remote sensing data as the major data source, the authors extracted the environment information pregnant with landslides including geomorphological, land cover, geological, and hydrology by stereo image processing and spectral analysis, and analyzed the landslide hazard by using the random forest model. Furthermore, the rule of extraction for typical elements at risk is established through the approach of object-oriented image analysis, and then the building and road information is extracted from the high-resolution satellite images. Finally, a landslide risk map is developed by integrating the elements at risk and landslide hazard datasets. According to the map, 9% of the study area is identified as high-risk zones encompassing 41 km2, and these high-risk areas are located in county and towns covered by transportation networks and other urbanized areas with high density of populations and property. The results of the risk assessment are basically consistent with the field observation and survey.

Key words: landslides, hazard, elements at risk, risk assessment, remote sensing, Three Gorges

中图分类号: 

  • P642.22

[1] Sassa K, Rouhban B, Briceño S, et al. Landslides:Global Risk Preparedness[M]. Berlin:Springer Berlin Heidelberg, 2013.

[2] Australian Geomechanics Society (AGS). Landslide Risk Management Concepts and Guidelines[J]. Australian Geomechanics, 2000, 35(1):49-92.

[3] Spiker E C, Gori P. National Landslide Hazards Mitigation Strategy:A Framework for Loss Reduction[R]. Virginia:Reston Press, 2003.

[4] Wise M P, Moore G D, VanDine D F. Landslide Risk Case Studies in Forest Development Planning and Operations[EB/OL].[2014-12-10] http://www.for.gov.bc.ca/hfd/pubs/Docs/Lmh/Lmh56.htm.

[5] Lateltin O, Haemmig C, Raetzo H, et al. Landslide Risk Management in Switzerland[J]. Landslides, 2005, 2(4):313-320.

[6] Fell R, Corominas J, Bonnard C, et al. Guidelines for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning[J]. Engineering Geology, 2008, 102(3/4):85-98.

[7] Porter M, Morgenstern N. Landslide Risk Evaluation:Canadian Technical Guidelines and Best Practices Related to Landslides:A National Initiative for Loss Reduction[EB/OL].[2014-12-10] http://geoscan.nrcan.gc.ca.

[8] Corominas J, Westen C, Frattini P, et al. Recommendations for the Quantitative Analysis of Landslide Risk[J]. Bulletin of Engineering Geology and the Environment, 2014, 73(2):209-263.

[9] Bell R, Glade T. Quantitative Risk Analysis for Lan-dslides:Examples from Bíldudalur, NW-Iceland[J]. Natural Hazards and Earth System Sciences, 2004, 4:117-131.

[10] Remondo J, Bonachea J, Cendrero A. Quantitative Landslide Risk Assessment and Mapping on the Basis of Recent Occurrences[J]. Geomorphology, 2008, 94:496-507.

[11] Zêzere J L, Garcia R A C, Oliveira S C, et al. Probabilistic Landslide Risk Analysis Considering Direct Costs in the Area North of Lisbon (Portugal)[J]. Geomorphology, 2008, 94:467-495.

[12] Pellicani R, Van Westen C J, Spilotro G. Assessing Landslide Exposure in Areas with Limited Landslide Information[J]. Landslides, 2014, 11(3):463-480.

[13] 马寅生,张业成,张春山,等.地质灾害风险评价的理论与方法[J].地质力学学报,2004,10(1):7-18. Ma Yinsheng, Zhang Yecheng, Zhang Chunshan, et al. Theory and Approaches to the Risk Evaluation of Geological Hazards[J]. Journal of Geomechanics, 2004, 10(1):7-18.

[14] 汪华斌, 吴树仁. 滑坡灾害风险评价的关键理论与技术方法[J]. 地质通报,2008,27(11):1764-1770. Wang Huabin, Wu Shuren. Key Theory and Method of Landslide Hazard Risk Assessments[J]. Geological Bulletin of China, 2008, 27(11):1764-1770.

[15] 胡瑞林,范林峰,王珊珊,等. 滑坡风险评价的理论与方法研究[J]. 工程地质学报,2013,21(1):76-84. Hu Ruilin, Fan Linfeng, Wang Shanshan, et al. Theory and Method for Landslide Risk Assessment:Current Status and Future Development[J]. Journal of Engineering Geology, 2013, 21(1):76-84.

[16] 乔建平,王萌,石莉莉. 区域滑坡风险评估中的风险区划与概率分析[J]. 自然灾害学报,2012,21(2):51-56. Qiao Jianping, Wang Meng, Shi Lili. Risk Zoning and Probability Analysis of Regional Landslide Risk Assessment[J]. Journal of Natural Disasters, 2012, 21(2):51-56.

[17] 殷坤龙,张桂荣,陈丽霞,等. 滑坡灾害风险分析[M]. 北京:科学出版社,2010. Yin Kunlong, Zhang Guirong, Chen Lixia, et al. Risk Analysis of Landslide Hazard[M]. Beijing:Science Press, 2010.

[18] 吴树仁,石菊松,张春山,等.滑坡风险评估理论与技术[M].北京:科学出版社,2012. Wu Shuren, Shi Jusong, Zhang Chunshan, et al. The Theory and Technology of Landslide Risk Assessment[M]. Beijing:Science Press, 2012.

[19] 石菊松. 基于遥感和地理信息系统的滑坡风险评估关键技术研究[D]. 北京:中国地质科学院,2008. Shi Jusong. Key Techniques Study of Remote Sensing and Geographic Information System Based Landslide Risk Assessment[D]. Beijing:China Academy of Geological Sciences, 2008.

[20] 唐亚明,张茂省,薛强. 一种大比例尺的滑坡风险区划方法:以延安市区黄土滑坡风险评价为例[J]. 地质通报,2011,30(1):166-172. Tang Yaming, Zhang Maosheng, Xue Qiang. Landslide Risk Assessment Methods and Flow on a Large Scale:A Case Study of Loess Landslides Risk Assessment in Yan'an Urban Districts, Shaanxi, China[J]. Geological Bulletin of China, 2011, 30(1):166-172.

[21] 彭令,牛瑞卿,赵艳南,等. 区域滑坡灾害风险评估:以长江三峡库区秭归县境内为例[J]. 吉林大学学报(地球科学版),2013,43(3):891-901. Peng Ling, Niu Ruiqing, Zhao Yannan, et al. Risk Assessment of a Regional Landslide:A Case of Zigui County Territory in Three Gorges Reservoir[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3):891-901.

[22] Akgun A, K?ncal C, Pradhan B. Application of Remote Sensing Data and GIS for Landslide Risk Assessment as an Environmental Threat to Izmir City (West Turkey)[J]. Environmental Monitoring and Assessment, 2012, 184(9):1-18.

[23] 王孔伟,张帆,邱殿明.三峡库区黄陵背斜形成机理及与滑坡群关系[J]. 吉林大学学报(地球科学版),2015,45(4):1142-1154. Wang Kongwei, Zhang Fan, Qiu Dianming. Relation of Huangling Anticline and Landslide Group in the Three Gorges Reservoir Area[J]. Journal of Jilin University(Earth Science Edition), 2015,45(4):1142-1154.

[24] 地质矿产部编写组. 长江三峡工程库岸稳定性研究[M]. 北京:地质出版社,1988. Working Group of Ministry of Geology and Mineral Resources. Unstability Problems of the Slope Along Yangtze River in the Region of the Three Gorges Project[M]. Beijing:Geological Publishing House, 1988.

[25] 牛瑞卿,彭令,叶润青,等. 基于粗糙集的支持向量机滑坡易发性评价[J]. 吉林大学学报(地球科学版),2012,42(2):431-439. Niu Ruiqing, Peng Ling, Ye Runqing, et al. Lan-dslide Susceptibility Assessment Based on Rough Sets and Support Vector Machine[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(2):431-439.

[26] Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1):5-32.

[1] 赵金童, 牛瑞卿, 姚琦, 武雪玲. 雷达数据辅助下的滑坡易发性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1182-1191.
[2] 郑确, 刘财, 田有. 辽宁海城及其邻区地震b值空间分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 922-933.
[3] 王明常, 张馨月, 张旭晴, 王凤艳, 牛雪峰, 王红. 基于极限学习机的GF-2影像分类[J]. 吉林大学学报(地球科学版), 2018, 48(2): 373-378.
[4] 谭福林, 胡新丽, 张玉明, 何春灿, 章涵. 考虑渐进破坏过程的滑坡推力计算方法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 193-202.
[5] 景先庆, 杨振宇, 仝亚博, 王恒, 徐颖超. 三峡地区新元古代莲沱组底部凝灰岩锆石SHRIMP U-Pb年代学及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(1): 165-180.
[6] 付建康, 罗刚, 胡卸文. 滑坡堰塞坝越顶溢流破坏的物理模型实验[J]. 吉林大学学报(地球科学版), 2018, 48(1): 203-212.
[7] 闫佰忠, 邱淑伟, 肖长来, 梁秀娟. 长白山玄武岩区地热异常区遥感识别[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1819-1828.
[8] 李鹏, 苏生瑞, 马驰, 黄璜, 徐继维. 堆积层-基岩接触面滑坡的形成机理——以祖师庙滑坡为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1471-1479.
[9] 王孔伟, 常德龙, 李春波, 胡安龙, 魏东. 再论“滑坡群”——以三峡库区为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1491-1501.
[10] 秦胜伍, 马中骏, 刘绪, 李广杰, 彭帅英, 陈骏骏, 翟健健. 基于简化Newmark模型的长白山天池火山诱发崩塌滑坡危险性评价[J]. 吉林大学学报(地球科学版), 2017, 47(3): 826-838.
[11] 张施跃, 束龙仓, 闵星, 胡慧杰, 邹志科. 基于土地利用类型的大气降水入渗补给量计算[J]. 吉林大学学报(地球科学版), 2017, 47(3): 860-867.
[12] 李晓东, 姜琦刚. 吉林西部多时相遥感数据分类方案的构建及应用[J]. 吉林大学学报(地球科学版), 2017, 47(3): 907-915.
[13] 徐则民, 梅雪峰, 王礼荣, 张有为, 曾强, 郭丽丽. 滑坡预警中的降水时空变异性——以云南头寨沟为例[J]. 吉林大学学报(地球科学版), 2017, 47(1): 154-162.
[14] 安玉科, 吴玮江, 张文, 姚青青, 宋建, 张宏宏. 抗滑桩裂纹控制荷载结构设计法及工程应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 171-178.
[15] 刘海龙, 马小龙, 袁欣, 穆环玲, 冷冰原, 洪梅. 基于多元回归分析的铬污染地下水风险评价方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1823-1829.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!