吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (6): 1645-1653.doi: 10.13278/j.cnki.jjuese.20170173

• 地质与资源 • 上一篇    

页岩残留气定量方法及其地质意义

王涛利1,2, 王庆涛1, 刘文平3,4, 卢鸿1, 刘大永1   

  1. 1. 中国科学院广州地球化学研究所有机地球化学国家重点实验室, 广州 510640;
    2. 中国科学院大学, 北京 100049;
    3. 中国石油西南油气田分公司勘探开发研究院, 成都 610051;
    4. 页岩气评价与开采四川省重点实验室, 成都 610051
  • 收稿日期:2017-06-21 发布日期:2018-11-26
  • 通讯作者: 王庆涛(1987-),男,副研究员,主要从事非常规油气储层评价研究,E-mail:wangqingtao@gig.ac.cn E-mail:wangqingtao@gig.ac.cn
  • 作者简介:王涛利(1992-),男,博士研究生,主要从事非常规天然气地球化学研究,E-mail:wangtaoli@gig.ac.cn
  • 基金资助:
    国家自然科学基金项目(41602130);广东省自然科学基金项目(2016A030310116);中国科学院战略性先导科技专项(B类)(XDB10010501);中国科学院战略性先导科技专项(A类)(XDA14010102)

Quantitative Method of Crushed Gas in Shale and Its Geological Significance

Wang Taoli1,2, Wang Qingtao1, Liu Wenping3,4, Lu Hong1, Liu Dayong1   

  1. 1. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Exploration and Development Institute of Southwest Oil & Gas Field Company, PetroChina, Chengdu 610051, China;
    4. Sichuan Province Key Laboratory of Shale Gas Evaluation & Exploitation, Chengdu 610051, China
  • Received:2017-06-21 Published:2018-11-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41602130), Natural Science Foundation of Guangdong Province (2016A030310116), Strategic Priority Research Program of the Chinese Academy of Sciences (Class B) (XDB10010501), and Strategic Priority Research Program of the Chinese Academy of Sciences (Class A) (XDA14010102)

摘要: 本研究设计并制造了一套可在真空条件下粉碎页岩样品并释放其中残留气的装置,该装置的粉碎系统与富集模块和气相色谱联用后,可实现残留气的有机、无机气体化学成分定量分析;同时,封存在玻璃管内的另一部分残留气可进一步开展稳定碳同位素分析,从而获得页岩残留气完整的化学成分和碳同位素组成特征。利用混合标准气体标定该装置,烃类和无机气体浓度与气相色谱响应相关系数达0.999,表明仪器状态稳定,残留气定量数据准确可信。使用不同露头页岩样品(贵州习水县下志留统龙马溪组、南京幕府山下寒武统牛蹄塘组和延安上三叠统延长组)检测该装置,页岩残留气量和碳同位素测试结果平行性良好,表明该装置系统可用于分析页岩残留气。对川南钻井龙马溪组样品残留气的测试结果表明:龙马溪组页岩残留气化学成分主要为CO2和N2等无机气体,烃类组分以CH4为主,C2H6及更高碳数烃类含量极少;其甲烷碳同位素值为-38.1‰~-33.9‰,均值为-35.8‰,该甲烷碳同位素值与已发表的同地区页岩生产气非常接近,表明了二者的同源性,川南页岩气田中的页岩气来源于龙马溪组,符合页岩气的严格定义。此外,本研究还对宜昌地区浅钻五峰组和龙马溪组页岩开展了残留气分析,结果表明:残留烃气量与总有机碳质量分数、碳酸盐岩质量分数成呈弱正相关关系,与DFT(密度泛函理论)比表面积和BJH(Barrett-Joyner-Halenda)孔体积呈负相关关系,分析认为残留气并不是简单地以吸附或游离形式存在,而是封存于封闭孔中的极少量烃类和无机气体。

关键词: 残留气, 定量, 气源, 稳定碳同位素, 页岩气

Abstract: A device was designed and manufactured to release the crushed gas in shales under vacuum. The gas from this device was geochemically and quantitatively analyzed by the device combined with the enrichment module and gas chromatography. Meanwhile, the comprehensive chemical composition and the stable carbon isotopic composition were obtained through analyzing the gas sealed in the glass tube. With the mixed standard gases calibrating, the correlation coefficient between concentrations of organic and inorganic gases and gas chromatographic response reached 0.999, which indicates that the device is stable for a quantitative analysis of the crushed gas. The result showed a good parallelism between the gas yields and stable carbon isotope values when the different outcrop shales (the Lower Silurian Longmaxi Formation in Xishui County, Guizhou, the Lower Cambrian Niutitang Formation in Mufu Mountain, Nanjing and Upper Triassic Yanchang Formation in Yan'an, Shaanxi) were analyzed, and reported the chemical and stable carbon isotopic compositions of the crushed gases of the core samples from the Lower Silurian Longmaxi Formation, southern Sichuan basin. The results revealed that the crushed gases are mainly inorganic gases (N2 and CO2) with a little hydrocarbon gas that are mainly composed of CH4 and extremely low content of C2H6 and C3H8. The δ13C1 values of crushed gas range from -38.1‰ to -33.9‰ with a mean value of -35.8‰, which is similar to the value of shale gas in the same area proposed by previous studies. In addition, the crushed gas of shale at low depths of (20-46) m showed a weakly positive relationship between the yield of crushed gas and w(TOC) values/carbonate content, while a negative correlation between the yields of crushed gas with DFT surface area and BJH pore volume. This suggests that the commercial shale gas is possibly originated from the Lower Silurian Longmaxi Formation, corresponding to the strict definition of shale gas. Hence, the crushed gases are neither adsorbed nor dissociated in shale gas reservoir, but sealed up in the enclosed pores in shales.

Key words: crushed gas, quantitative, gas source, stable carbon isotope, shale gas

中图分类号: 

  • P593
[1] 曹春辉,张铭杰,汤庆艳,等. 四川盆地志留系龙马溪组页岩气气体地球化学特征及意义[J]. 天然气地球科学,2015,26(8):1604-1612. Cao Chunhui, Zhang Mingjie, Tang Qingyan, et al. Geochemical Characteristics and Implications of Shale Gas in Longmaxi Formation, Sichuan Basin, China[J]. Natural Gas Geoscience, 2015, 26(8):1604-1612.
[2] 聂海宽,唐玄,边瑞康. 页岩气成藏控制因素及中国南方页岩气发育有利区预测[J]. 石油学报,2009,30(4):484-491. Nie Haikuan, Tang Xuan, Bian Ruikang. Controlling Factors for Shale Gas Accumulation and Prediction of Potential Development Area in Shale Gas Reservoir of South China[J]. Acta Petrolei Sinica, 2009, 30(4):484-491.
[3] 邹才能,董大忠,杨桦,等. 中国页岩气形成条件及勘探实践[J]. 天然气工业,2011,31(12):26-40. Zou Caineng, Dong Dazhong, Yang Hua, et al. Conditions of Shale Gas Accumulation and Exploration Practices in China[J]. Natural Gas Industry, 2011, 31(12):26-40.
[4] 冯小龙,敖卫华,唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版),2018,48(3):678-692. Feng Xiaolong, Ao Weihua, Tang Xuan. Characteristics of Pore Development and Its Main Controlling Factors of Continental Shale Gas Reservoirs:A Case Study of Chang7 Member in Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(3):678-692.
[5] Zhang T W, Yang R S, Milliken K L, et al. Chemical and Isotopic Composition of Gases Released by Crush Methods from Organic Rich Mudrocks[J]. Organic Geochemistry, 2014, 73:16-28.
[6] 李玉喜,乔德武,姜文利,等. 页岩气含气量和页岩气地质评价综述[J]. 地质通报,2011,30(2/3):308-317. Li Yuxi, Qiao Dewu, Jiang Wenli, et al. Gas Content of Gas-Bearing Shale and Its Geological Evaluation Summary[J]. Geological Bulletin of China, 2011, 30(2/3):308-317.
[7] 史宝光,沈平,王晓锋,等. 岩石解析气实验新方法对气源对比研究的突破[J]. 科学通报,2013,58(5/6):479-484. Shi Baoguang, Shen Ping, Wang Xiaofeng, et al. Groundbreaking Gas Source Rock Correlation Research Based on the Application of a New Experimental Approach for Adsorbed Gas[J]. Chinese Science Bulletin, 2103, 58(5/6):479-484.
[8] 魏强,晏波,肖贤明. 页岩气解吸方法研究进展[J]. 天然气地球科学,2015,26(9):1657-1665. Wei Qiang, Yan Bo, Xiao Xianming. Research Progress on the Desorption Methods of Shale Gas[J]. Natural Gas Geoscience, 2015, 26(9):1657-1665.
[9] Tang Q Y, Zhang M J, Cao C H, et al. The Molecular and Carbon Isotopic Constrains on Origin and Storage of Longmaxi Formation Shale Gas in Changning Area, Sichuan Basin, China[J]. Interpretation, 2015, 5:SJ35-SJ47.
[10] Wu C J, Tuo J C, Zhang M F, et el. Sedimentary and Residual Gas Geochemical Characteristics of the Lower Cambrian Organic-Rich Shales in Southeastern Chongqing, China[J]. Marine and Petroleum Geology, 2016, 75:140-150.
[11] Wang Q T, Lu H, Shen C C, et al. Impact of Inorganically Bound Sulfur on Late Shale Gas Generation[J]. Energy Fuels, 2014, 28:785-793.
[12] 杨珊. 页岩中微量元素地球化学特征及过渡金属矿物对页岩气生成的影响[D]. 北京:中国科学院大学,2015. Yang Shan. Geochemical Characterization of Trace Elements in Shale and Effects of Transition Metal Minerals on the Generation of Shale Gas[D]. Beijing:University of Chinese Academy of Sciences, 2015.
[13] 刘岩,周文,邓虎成. 鄂尔多斯盆地上三叠统延长组含气页岩地质特征及资源评价[J]. 天然气工业,2013,33(3):19-23. Liu Yan, Zhou Wen, Deng Hucheng. Geological Characteristics of Gas-Bearing Shales in the Yanchang Formation and Its Resource Assessment in the Ordos Basin[J]. Natural Gas Industry, 2013, 33(3):19-23.
[14] Dai J X, Zou C N, Liao S M, et al. Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Sichuan Basin[J]. Organic Geochemistry, 2014, 74:3-12.
[15] 王哲,李贤庆,张吉振,等. 四川盆地不同区块龙马溪组页岩气地球化学特征对比[J]. 中国煤炭地质,201628(2):22-27. Wang Zhe, Li Xianqing, Zhang Jizhen, et al. Longmaxi Formation Shale Gas Geochemical Features Comparison Between Different Blocks in Sichuan Basin[J]. Coal Geology of China, 2016, 28(2):22-27.
[16] 高波. 四川盆地龙马溪组页岩气地球化学特征及其地质意义[J]. 天然气地球科学,2015,26(6):1173-1182. Gao Bo. Geochemical Characteristics of Shale Gas from Lower Silurian Longmaxi Formation in the Sichuan Basin and Its Geological Singnificance[J]. Natural Gas Geoscience, 2015, 26(6):1173-1182.
[17] Baxby M, Patience R L, Bartle K D. The Origin and Diagenesis of Sedimentary Organic Nitrogen[J]. Journal of Petroleum Geology, 1994, 17(2):211-230.
[18] Krooss B M. Littke R, Miiller B, et al. Generation of Nitrogen and Methane from Sedimentary Organic Matter:Implications on the Dynamics of Natural Gas Accumulations[J]. Chemical Geology, 1995, 126:291-318.
[19] 戴金星. 天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学,1993,4(2/3):1-40. Dai Jinxing. Geochemical Characteristics of Carbon and Hydrogen for Natural Gas and Identification for Different Types of Natural Gas[J]. Natural Gas Geoscience, 1993, 4(2/3):1-40.
[20] Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores[J]. AAPG Bulletin, 2012, 96(6):1071-1098.
[21] 张晓明,石万忠,徐清海,等. 四川盆地焦石坝地区页岩气储层特征及控制因素[J]. 石油学报,2015,36(8):926-940. Zhang Xiaoming, Shi Wanzhong, Xu Qinghai, et al. Reservoir Characteristics and Controlling Factors of Shale Gas in Jiaoshiba Area, Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(8):926-940.
[1] 李雷, 王贵军, 张一, 王冠霖. 岩体风化卸荷数值判别[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1532-1538.
[2] 瞿雪姣, 李继强, 张吉, 赵忠军, 戚志林, 罗超. 辫状河致密砂岩储层构型单元定量表征方法[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1342-1352.
[3] 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 678-692.
[4] 徐宏杰, 胡宝林, 郑建斌, 刘会虎, 张文永, 郑凯歌. 淮南煤田煤系页岩气储集空间特征及其岩相控制作用[J]. 吉林大学学报(地球科学版), 2017, 47(2): 418-430.
[5] 刘敬寿, 戴俊生, 徐珂, 张艺, 丁文龙. 构造裂缝产状演化规律表征方法及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 84-94.
[6] 韦丹宁, 付广. 反向断裂下盘较顺向断裂上盘更易富集油气机理的定量解释[J]. 吉林大学学报(地球科学版), 2016, 46(3): 702-710.
[7] 邹友琴, 刘莉, 李宏卿, 颜春, 曾马荪, 兰盈盈. 水文地质条件对页岩气开采控制[J]. 吉林大学学报(地球科学版), 2016, 46(3): 824-830.
[8] 潘保芝, 蒋必辞, 刘文斌, 房春慧, 张瑞. 致密砂岩储层含气测井特征及定量评价[J]. 吉林大学学报(地球科学版), 2016, 46(3): 930-937.
[9] 杜治利, 田亚, 刘洪军, 王凤琴, 杜小弟, 袁远, 仝立华. 鄂尔多斯盆地南部延长组长9段页岩气资源潜力评价[J]. 吉林大学学报(地球科学版), 2016, 46(2): 358-367.
[10] 高帅, 马世忠, 庞雄奇, 巩磊, 陈昶旭, 高昂, 秦旗. 准噶尔盆地腹部侏罗系油气成藏主控因素定量分析及有利区预测[J]. 吉林大学学报(地球科学版), 2016, 46(1): 36-45.
[11] 熊德明, 张明峰, 吴陈君, 妥进才. 基于模糊层次分析方法的泥质有效低熟气源岩评价[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1620-1630.
[12] 张广智, 陈娇娇, 陈怀震, 张金强, 印兴耀. 基于岩石物理模版的碳酸盐岩含气储层定量解释[J]. 吉林大学学报(地球科学版), 2015, 45(2): 630-638.
[13] 刘福春,程日辉,解启来,胡望水,汤济广,李忠博,杨秀辉,徐浩,周隶华. 松辽盆地梨树断陷页岩气资源潜力评价[J]. 吉林大学学报(地球科学版), 2014, 44(3): 762-773.
[14] 尚北川,陈建平,郑啸,戎景会,严琼,武曌. 个旧高松矿田断裂构造三维信息定量特征[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1448-1456.
[15] 肖克炎,娄德波,孙莉,李景朝,叶天竺. 全国重要矿产资源潜力评价一些基本预测理论方法的进展[J]. 吉林大学学报(地球科学版), 2013, 43(4): 1073-1082.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!