吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (2): 394-399.doi: 10.13278/j.cnki.jjuese.20170199

• 地质与资源 • 上一篇    下一篇

油页岩原位开采温度-时间-转化率判识方法及应用

马中良1,2,3,4, 王强1,2,3,4, 郑伦举1,2,3,4, 张彩明1,2,3,4   

  1. 1. 页岩油气富集机理与有效开发国家重点实验室, 江苏 无锡 214126;
    2. 国家能源页岩油研发中心, 江苏 无锡 214126;
    3. 中国石油化工集团公司油气成藏重点实验室, 江苏 无锡 214126;
    4. 中国石油化工股份有限公司石油勘探开发研究院无锡石油地质研究所, 江苏 无锡 214126
  • 收稿日期:2017-07-30 出版日期:2019-03-26 发布日期:2019-03-28
  • 作者简介:马中良(1984-),男,高级工程师,主要从事油气地球化学、石油实验地质学和油页岩原位开采技术研究,E-mail:mazl.syky@sinopec.com
  • 基金资助:
    国家科技重大专项(2017ZX05036002-004,2017ZX05005001-003);国家能源页岩油研发中心自主研发基金项目(2017)

Identification Method & Application of Temperature and Heating Time and Hydrocarbon Conversion Rate of Oil Shale In-Situ Mining

Ma Zhongliang1,2,3,4, Wang Qiang1,2,3,4, Zheng Lunju1,2,3,4, Zhang Caiming1,2,3,4   

  1. 1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Wuxi 214126, Jiangsu, China;
    2. State Energy Center for Shale Oil Research and Development, Wuxi 214126, Jiangsu, China;
    3. Sinopec Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, Jiangsu, China;
    4. Wuxi Research Institute of Petroleum Geology, Exploration and Production Research Institute, Sinopec, Wuxi 214126, Jiangsu, China
  • Received:2017-07-30 Online:2019-03-26 Published:2019-03-28
  • Supported by:
    Supported by National Science and Technology Major Projiect (2017ZX05036002-004, 2017ZX05005001-003) and Independent Research and Development Fund of State Energy Center for Shale Oil Research and Development (2017)

摘要: 油页岩原位转化开采加热的最终温度、加热时间和最终油气转化率与原位开采的经济成本息息相关。利用Rock-Eval 6型岩石热解分析仪分别获取不同升温速率下的油页岩烃产率-转化率和烃产率-活化能之间的关系,以烃产率为桥梁,建立活化能与转化率的对应关系;在此基础上,依据化学动力学反应原理,将油页岩有机质(干酪根)演化生成油气的过程近似为具一级反应特征的热裂解反应,获取不同转化率条件下温度倒数(1/T)与时间对数(ln t)的关系式,建立油页岩原位转化温度-时间-转化率关系图。以广东茂名盆地油柑窝组油页岩为例,通过上述方法建立了油页岩原位转化开采温度-时间-转化率关系图。由判识关系图可知:加热至350℃开采该区油页岩,转化率达90%需要98 a;加热至200℃开采该区油页岩,在不采取其他措施的情况下即使转化10%也需要147 a。实际情况下,地下油页岩原位受热具有非均质性,加热开采能耗大,通过添加催化剂降低油页岩原位油气转化所需的温度、改善油气产物品质可能是油页岩原位开采技术的一种发展方向。

关键词: 油页岩, 原位开采, 转化率, 页岩油, 茂名盆地

Abstract: The final temperature, heating time and the final oil and gas conversion rate of in-situ transformation of oil shale are closely related to the economic cost of in-situ mining. The relationship between hydrocarbon yield-conversion rate and hydrocarbon yield-activation energy of oil shale under different heating rates was obtained by using Rock-Eval 6 rock pyrolysis analyzer. The relationship between activation energy and conversion rate was established based on hydrocarbon yield. Further, based on the principle of chemical kinetics, the process of oil shale organic matter (kerogen) evolution was approximated to the thermal cracking reaction with the first-order reaction characteristics, and the relationship between reciprocal of temperature (1/T) and logarithm of heating time (ln t) under different conversion rates was obtained, and the temperature-time-conversion diagram of in-situ conversion of oil shale was established. Taking the oil shale of E2-3 y Formation in Maoming Basin of Guangdong Province as an example, the temperature-time-conversion diagram of oil shale was drawn by the above method. It is shown that it would take 98 years to extract oil shale in this area by heating to 350℃ with 90% conversion rate, and 147 years to heat to 200℃ with 10% conversion rate without other measures. In fact, the in-situ heating of underground oil shale is heterogeneous,and the energy consumption of heating is large. It is possible to reduce the temperature and improve the quality of oil shale by adding catalyst to oil shale in-situ production.

Key words: oil shale, in-situ mining, conversion rate, shale oil, Maoming basin

中图分类号: 

  • P618.12
[1] 刘招君,杨虎林,董清水,等.中国油页岩[M].北京:石油工业出版社,2009. Liu Zhaojun,Yang Hulin,Dong Qingshui,et al.Oil Shale in China[M].Beijing:Petroleum Industry Press,2009.
[2] 李隽,汤达祯,薛华庆,等.中国油页岩原位开采可行性初探[J].西南石油大学学报(自然科学版),2014,36(1):58-64. Li Jun,Tang Dazhen,Xue Huaqing,et al.Discission of Oil Shale In-Situ Conversion Process in China[J].Journal of Southwest Petroleum University (Science & Technology Edition),2014,36(1):58-64.
[3] 马中良,郑伦举,赵中熙.不同边界条件对油页岩原位转化开采的影响及启示[J].吉林大学学报(地球科学版),2017,47(2):431-441. Ma Zhongliang,Zheng Lunju,Zhao Zhongxi.Influence and Its Revelation of Oil Shale In-Situ Mining Simulation in Different Boundary Conditions[J].Journal of Jilin University (Earth Science Edition),2017,47(2):431-441.
[4] 李广友,马中良,郑家锡,等.油页岩不同温度原位热解物性变化核磁共振分析[J].石油实验地质,2016,38(3):402-406. Li Guangyou,Ma Zhongliang,Zheng Jiaxi,et al.NMR Analysis of the Physical Change of Oil Shales During in Situ Pyrolysis at Different Temperatures[J].Petroleum Geology & Experiment,2016,38(3):402-406.
[5] 汪友平,王益维,孟祥龙,等.美国油页岩原位开采技术与启示[J].石油钻采工艺,2013,35(6):55-59. Wang Youping,Wang Yiwei,Meng Xianglong,et al.Enlightenment of American's Oil Shale In-Situ Retorting Technology[J].Oli Drilling & Production Technology,2013,35(6):55-59.
[6] 孙友宏,邓孙华,王洪艳.国际油页岩开发技术与研究进展:记第33届国际油页岩会议[J].吉林大学学报(地球科学版),2015,45(4):1052-1059. Sun Youhong,Deng Sunhua,Wang Hongyan.Advances in the Exploitation Technologies and Researches of Oil Shale in the World:Report on 33rd Oil Shale Symposium in US[J].Journal of Jilin University (Earth Science Edition),2015,45(4):1052-1059.
[7] 何生,叶加仁,徐思煌,等.石油及天然气地质学[M].武汉:中国地质大学出版社,2010. He Sheng,Ye Jiaren,Xu Sihuang,et al.Geology of Oil and Gas[M].Wuhan:China University of Geosciences Press,2010.
[8] Al-Harahsheh A,Al-Ayed O,Moh'd Al-Harahsheh,et al.Heating Rate Effect on Fractional Yield and Composition of Oil Retorted from El-Lajjun Oil Shale[J].Journal of Analytical & Applied Pyrolysis,2010,89(2):239-243.
[9] Goldfarb J L,Anthony D'Amico,Culin C,et al.Oxidation Kinetics of Oil Shale Semicokes:Reactivity as a Function of Pyrolysis Temperature and Shale Origin[J].Energy & Fuels,2013,27(2):666-672.
[10] Sun Y H,Bai F T,Lü X S,et al.A Novel Energy-Efficient Pyrolysis Process:Self-Pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed[J].Scientific Reports,2015,5:8290.
[11] 王擎,王平,柏静儒,等.油页岩化学结构CPD模型的改进[J].中国电机工程学报,2017,37(2):621-627. Wang Qing,Wang Ping,Bai Jingru,et al.Improvement of the Chemical Percolation for Devolatilization Model Based on Chemical Structure of Oil Shale[J].Proceedings of the CSEE,2017,37(2):621-627.
[12] 雷怀玉,王红岩,刘德勋,等.柳树河油页岩的热解特征及动力学[J].吉林大学学报(地球科学版),2012,42(1):25-29. Lei Huaiyu,Wang Hongyan,Liu Dexun,et al.Pyrolysis Characteristics and Kinetics of Liushuhe Oil Shale[J].Journal of Jilin University (Earth Science Edition),2012,42(1):25-29.
[13] 岩石热解分析:GB/T18602-2012[S].北京:中国国家标准化管理委员会,2012. Rock Pyrolysis Analysis:GB/T18602-2012[S].Beijing:Standardization Administration of the People's Republic of China,2012.
[1] 日比娅, 孙友宏, 韩婧, 郭明义. 3种无机盐催化热解油页岩[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1043-1049.
[2] 马中良, 郑伦举, 赵中熙. 不同边界条件对油页岩原位转化开采的影响及启示[J]. 吉林大学学报(地球科学版), 2017, 47(2): 431-441.
[3] 刘招君, 孙平昌, 柳蓉, 孟庆涛, 胡菲. 敦密断裂带盆地群油页岩特征及成矿差异分析[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1090-1099.
[4] 杜佰伟, 谢尚克, 董宇, 彭清华, 郑博. 伦坡拉盆地渐新统丁青湖组油页岩特征及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(3): 671-680.
[5] 温志良, 姜福平, 钟长林, 姜雪飞, 王果谦, 齐岩. 松辽盆地东南隆起超大型油页岩矿床特征及成因[J]. 吉林大学学报(地球科学版), 2016, 46(3): 681-691.
[6] 王飞宇, 冯伟平, 关晶, 贺志勇. 湖相致密油资源地球化学评价技术和应用[J]. 吉林大学学报(地球科学版), 2016, 46(2): 388-397.
[7] 孙友宏, 邓孙华, 王洪艳. 国际油页岩开发技术与研究进展记第33届国际油页岩会议[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1052-1059.
[8] 李志明, 芮晓庆, 黎茂稳, 曹婷婷, 徐二社, 陶国亮, 蒋启贵. 北美典型混合页岩油系统特征及其启示[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1060-1072.
[9] 郑玉龙, 陈春瑞, 王佰长, 王占国, 刘胜英, 吴相梅. 松辽盆地北部油页岩资源潜力评价[J]. 吉林大学学报(地球科学版), 2015, 45(3): 683-690.
[10] 孙耀庭, 徐守余, 张世奇, 徐昊清, 郭丽丽. 山东昌乐凹陷油页岩地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2015, 45(3): 736-742.
[11] 谢尚克,杜佰伟,王剑,彭清华,郑博. 西藏伦坡拉盆地油页岩特征及分布规律[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1760-1767.
[12] 吴红烛,黄志龙,杨柏松,柳波,闫玉魁,桑廷义,文川江. 马朗凹陷低熟页岩油地球化学特征及成烃机理[J]. 吉林大学学报(地球科学版), 2014, 44(1): 56-66.
[13] 孟庆涛,刘招君,胡菲,孙平昌,柳蓉,周人杰,甄甄. 桦甸盆地始新统油页岩稀土元素地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(2): 390-399.
[14] 刘招君, 孟庆涛, 贾建亮, 孙平昌, 柳蓉, 胡晓峰. 陆相盆地油页岩成矿规律:以东北地区中、新生代典型盆地为例[J]. J4, 2012, 42(5): 1286-1297.
[15] 季桂娟, 杨春明, 甘树才, 吴晓敏, 王忠革. 利用油页岩灰渣制备通用硅酸盐水泥[J]. J4, 2012, 42(4): 1173-1178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!