吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (5): 1389-1397.doi: 10.13278/j.cnki.jjuese.20180156

• 地质工程与环境工程 • 上一篇    下一篇

延安Q3原状黄土渗透各向异性及微结构分析

洪勃1,2, 李喜安1, 王力1,2, 李林翠1   

  1. 1. 长安大学地质工程与测绘学院, 西安 710054;
    2. 陕西省地质调查院矿山地质灾害成灾机理与防控重点实验室, 西安 710054
  • 收稿日期:2018-06-16 发布日期:2019-10-10
  • 通讯作者: 李喜安(1968-),男,教授,博士生导师,主要从事黄土地质灾害方面的教学与科研工作,E-mail:dclixa@chd.edu.cn E-mail:dclixa@chd.edu.cn
  • 作者简介:洪勃(1987-),男,博士研究生,主要从事黄土工程地质及其灾害防治研究,E-mail:hongbo@chd.edu.cn
  • 基金资助:
    国家自然科学基金项目(41877225,41572264);中央高校基本科研业务费专项资金项目(300102268717);矿山地质灾害成灾机理与防控重点实验室开放课题(KF2017-16,KF2017-17)

Permeability Anisotropy and Microstructure of Yan'an Q3 Loess

Hong Bo1,2, Li Xi'an1, Wang Li1,2, Li Lincui1   

  1. 1. School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, China;
    2. Key Laboratory of Mine Geological Hazards Mechanism and Control, Shaanxi Institute of Geological Survey, Xi'an 710054, China
  • Received:2018-06-16 Published:2019-10-10
  • Supported by:
    Supported by National Natural Science Foundation of China (41877225, 41572264), Fundamental Research Funds for the Central Universities, CHD (300102268717), Opening Topics of Key Laboratory of Mine Geological Hazards Me-chanism and Control (KF2017-16,KF2017-17)

摘要: 为研究原状马兰黄土的渗透各向异性,以延安削山造地重大工程开挖所揭露的完整黄土剖面中的马兰黄土层为研究对象,采用室内变水头渗透试验获取不同埋深不同渗流时长原状黄土垂直向和水平向的渗透系数,并对试验前后黄土试样垂直向和水平向SEM(scanning electron microscope)电镜扫描结果进行分析,从微观结构上揭示原状马兰黄土结构各向异性的原因。结果表明:原状黄土垂直向和水平向饱和渗透系数具有显著各向异性,且垂直向和水平向渗透系数都随渗流时间的持续而减小,各向异性渗透性能在时间尺度上具有某种衰减关系;同时,原状黄土各向异渗透性能随埋深的增大而逐渐减弱;土颗粒结构的接触、排列方式是导致黄土原生各向异性的根本原因,也是导致渗流初始阶段渗透系数各向异性的原因,而渗流作用产生的次生结构各向异性则使渗透系数各向异性在时间尺度上表现得更为明显。

关键词: 黄土, 渗透各向异性, 原生孔隙, 次生孔隙, 微观结构

Abstract: In order to study the anisotropic permeability of undisturbed loess, Yan'an Q3 loess with obvious anisotropy was chosen as the research object. The vertical and horizontal permeability coefficients of different deep-buried undisturbed loess were measured by variable water head permeability tests in laboratory. The results showed that the vertical permeability coefficient of undisturbed loess was larger than the horizontal permeability coefficient of the same horizon. In addition, both vertical and horizontal permeability coefficients of undisturbed loess decreased with the increase of burial depth of loess, and the anisotropy of undisturbed loess was weakened as the burial depth increased, which indicates that anisotropic undisturbed loess gradually become isotropic with the increase of buried depth. Furthermore, in order to investigate the anisotropy of undisturbed loess from microstructure, the longitudinal and transversal sections of undisturbed loess in different buried depths were characterized by SEM (scanning electron microscopy). It was found that the contact and arrangement of soil particles are the fundamental factors resulting in the anisotropic loess.

Key words: loess, permeability anisotropy, primary porosity, induced porosity, microstructure

中图分类号: 

  • P642.131
[1] Chan H T, Kenney T C. LaboratoryInvestigation of Permeability Ratio of New Liskeard Varved Soil[J]. Canadian Geotechnical Journal, 1973, 10(3):453-472.
[2] Kenney T C, Chan H T. Field Investigation of Permeability Ratio of New Liskeard Varved Soil[J]. Canadian Geotechnical Journal, 1973, 10(3):473-488.
[3] 张宗祜,姚足金,王开申. 中国黄土的主要工程地质问题[J]. 地质学报, 1973(2):255-269. Zhang Zonghu, Yao Zujin, Wang Kaishen.Main Engineering Geological Problems of Chinese Loess[J]. Acta Geologica Sinica, 1973(2):255-269.
[4] 关文章. 湿陷性黄土工程性能新篇[M]. 西安:西安交通大学出版社, 1992. Guan Wenzhang. New Engineering Characteristics of Collapsible Loess[M]. Xi'an:Xi'an Jiaotong University Press, 1992.
[5] 郝君任,李大可. 用一个试样测定黄土各向渗透系数的方法[J]. 大坝观测与土工测试, 1988(2):37-41. Hao Junren, Li Dake. An Improvment for the Determination of Permeability Coefficient of Loess in Different Directions[J]. Dam Observation and Geotechnical Tests,1988(2):37-41.
[6] 于欣. 陕西省宝鸡地区黄土渗透系数的各向异性和尺度效应研究[D]. 西安:长安大学, 2016. Yu Xin. The Anisotropy and the Scale Effect of Hydraulic Conductivivty for the Loess in Baoji City, Shannxi Province[D]. Xi'an:Chang'an University, 2016.
[7] 张小筱. 泾阳南塬黄土边坡饱和渗透系数特性研究[D].西安:长安大学, 2016. Zhang Xiaoxiao. Characteristics of Loess Saturated Hydraulic Conductivity in Landslide of the South Jingyang Plateau[D], Xi'an:Chang'an University, 2016.
[8] 吕敬,柯贤敏,张小筱,等. 泾阳南塬黄土边坡饱和渗透系数变异性分析[J]. 水土保持通报, 2017, 37(3):254-257. Lü Jing, Ke Xianmin, Zhang Xiaoxiao, et al. Variability of Saturated Permeability Coefficient of Loess Slopes in South Jingyang Tableland[J]. Bulletin of Soil and Water Conservation, 2017, 37(3):254-257.
[9] Wang W, Wang Y, Sun Q, et al. Spatial Variation of Saturated Hydraulic Conductivity of a Loess Slope in the South Jingyang Plateau, China[J]. Engineering Geology, 2018, 236:70-78.
[10] 梁燕,邢鲜丽,李同录,等. 晚更新世黄土渗透性的各向异性及其机制研究[J]. 岩土力学, 2012, 33(5):1312-1318. Liang Yan, Xing Xianli, Li Tonglu, et al. Study of the Anisotropic Permeability and Mechanism of Q3 Loess[J]. Rock and Soil Mechanics, 2012, 33(5):1312-1318.
[11] 王铁行,杨涛,鲁洁. 干密度及冻融循环对黄土渗透性的各向异性影响[J]. 岩土力学, 2016, 37(增刊1):72-78. Wang Tiexing, Yang Tao, Lu Jie. Influence of Dry Density and Freezing-Thawing Cycles on Anisotropic Permeability of Loess[J]. Rock and Soil Mechanics, 2016(Sup. 1):72-78.
[12] 杨涛. 考虑密度及冻融影响的黄土渗透各向异性研究[D].西安:西安建筑科技大学, 2016. Yang Tao. Study on Anisotropic Permeability of Loess Considering Density and Freezing-Thawing Effect[D]. Xi'an:Xi'an University of Architecture and Technology, 2016.
[13] 土工试验方法标准:GB/T 50123-1999[S]. 北京:中国计划出版社, 1999. Standard for Soil Test Method:GB/T 50123-1999[S]. Beijing:China Planning Press, 1999.
[14] 李喜安,洪勃,李林翠,等.黄土湿陷对渗透系数影响的试验研究[J]. 中国公路学报, 2017, 30(6):198-208, 222. Li Xi'an, Hong Bo, Li Lincui, et al. Experimental Research on Permeability Coefficient Under Influence of Loess Collapsibility[J]. China Journal of Highway and Transport, 2017, 30(6):198-208, 222.
[15] 刘杰,傅裕. 土的渗透压密性质[J]. 水利学报,1993(5):76-81. Liu Jie, Fu Yu. The Infiltrating Consolidation Characteristic of Clay[J]. Journal of Hydraulic Engineering, 1993(5):76-81.
[16] 陈荣波,束龙仓,鲁程鹏,等. 含水层压密引起其特征参数变化的实验[J]. 吉林大学学报(地球科学版), 2013, 43(6):1958-1965. Chen Rongbo, Shu Longcang, Lu Chengpeng, et al.Experimental Study on the Characteristic Parameters Variation of the Aquifer Caused by Aquifer Compaction[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(6):1958-1965.
[17] 洪勃,李喜安,陈广东,等. 重塑马兰黄土渗透性试验研究[J]. 工程地质学报, 2016, 24(2):276-283. Hong Bo, Li Xi'an, Chen Guangdong, et al. Experimental Study of Permeability of Remolded Malan Loess[J]. Journal of Engineering Geology, 2016, 24(2):276-283.
[18] 矫德全,陈愈炯. 土的各向异性和卸荷体缩[J]. 岩土工程学报, 1994, 16(4):9-16. Jiao Dequan, Chen Yujiong. Anisotropy and Volume-Contraction of Soil Due to Axial Unloading in CD Test[J]. Chinese Jounal of Geotechnical Engineering, 1994, 16(4):9-16.
[19] Mast R F, Potter P E. Sedimentary Structures, Sand Shape Fabrics, and Permeability:Ⅱ[J]. The Journal of Geology, 1963, 71(5):548-565.
[20] 叶为民,杨林德,黄雨,等. 上海软土微观空隙各向异性特征及其成因分析[J]. 工程地质学报, 2004, 12(增刊1):84-87. Ye Weimin, Yang Linde, Huang Yu, et al.Microstructure and Anisotropy of Seepage of Shanghai Soft Soil[J]. Journal of Engineering Geology, 2004, 12(Sup. l):84-87.
[21] Chapuis R P, Gill D E. Hydraulic Anisotropy of Homogeneous Soils and Rocks:Influence of the Densification Process[J]. Bulletin of the International Association of Engineering Geology, 1989, 39(1):75-86.
[22] 张坤勇,殷宗泽,梅国雄. 土体两种各向异性的区别与联系[J]. 岩石力学与工程学报, 2005, 24(9):1599-1604. Zhang Kunyong, Yin Zongze, Mei Guoxiong.Difference and Connection of Two Kinds of Anisotropy of Soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9):1599-1604.
[23] 殷宗泽,徐志伟. 土体的各向异性及近似模拟[J]. 岩土工程学报, 2002, 24(5):547-551. Yin Zongze, Xu Zhiwei. Anisotropy of Soils and Its Approximate Simulation[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5):547-551.
[24] 李瑞. 非饱和黄土的次生各向异性及结构性试验研究[D]. 杨凌:西北农林科技大学, 2008. Li Rui. Research on Induced Anisotropy and Structural Characteristic of Unsaturated Loess[D]. Yangling:Northwest A&F University, 2008.
[1] 洪勇, 周蓉, 郑孝玉, 凌贤长. 不同排水条件下砂-黄土界面的剪切力学特性[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1073-1081.
[2] 李林翠, 李喜安, 洪勃, 王力. 不同埋深马兰黄土孔隙结构试验[J]. 吉林大学学报(地球科学版), 2019, 49(2): 493-503.
[3] 周阳, 苏生瑞, 李鹏, 马洪生, 张晓东. 板裂千枚岩微观结构与力学性质[J]. 吉林大学学报(地球科学版), 2019, 49(2): 504-513.
[4] 宋彧, 罗小博, 路承功, 陈志超, 卢国文. 庆阳地区超高层巨厚层黄土地基工程地质特征[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1756-1766.
[5] 魏恺泓, 裴向军, 张世殊, 冉从彦, 崔中涛, 李青春, 李进元. 基于IBIS-L的某黄土高填方边坡支护结构变形特征[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1556-1565.
[6] 彭湘林, 范文, 魏亚妮, 田陆, 邓龙胜. 黄土高原城市工程地质分区——以铜川地区为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1480-1490.
[7] 韩朋, 翟云峰, 栗粲圪, 张运, 杨会会, 靳春胜. 末次间冰期以来洛川黄土天然剩磁记录的可靠性[J]. 吉林大学学报(地球科学版), 2017, 47(3): 793-806.
[8] 张泽, 周泓, 秦琦, 邴慧, 武俊杰, 周攀峰. 冻融循环作用下黄土的孔隙特征试验[J]. 吉林大学学报(地球科学版), 2017, 47(3): 839-847.
[9] 刘鑫金, 冯阵东, 李聪, 周艳, 王亚明. 近源湖盆砂砾岩储层次生溶孔成因探讨——以查干凹陷祥6井区为例[J]. 吉林大学学报(地球科学版), 2017, 47(2): 393-404.
[10] 贾珍臻, 林承焰, 任丽华, 董春梅, 宫宝. 苏德尔特油田低渗透凝灰质砂岩成岩作用及储层质量差异性演化[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1624-1636.
[11] 陈彬滔, 潘树新, 梁苏娟, 张庆石, 刘彩燕, 王革. 陆相湖盆深水块体搬运体优质储层的主控因素以松辽盆地英台地区青山口组为例[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1002-1010.
[12] 柳蓉, 杨小红,董清水,刘冬青, 林斌,徐银波,张超. 罗子沟盆地有机质热演化对砂岩物性的改造作用[J]. 吉林大学学报(地球科学版), 2014, 44(2): 460-468.
[13] 张立原. 中国黄土高原洛川剖面S5以来的孢粉学记录[J]. 吉林大学学报(地球科学版), 2014, 44(1): 222-229.
[14] 吴谦,王常明,马栋和,宋朋燃. 辽西黄土陡坡的冲刷破坏机制[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1563-1571.
[15] 王艳忠,操应长,葸克来. 次生孔隙发育带的概念及石油地质意义新认识[J]. 吉林大学学报(地球科学版), 2013, 43(3): 659-668.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田纹全, 王璞珺,李嵩龄,孙晓猛,温暖,刘新. 新疆东天山哈密五堡地区中奥陶世大柳沟组火山岩岩石学和地球化学特征[J]. J4, 2005, 35(03): 296 -0301 .
[2] 吴春勇,王剑平,李景林,王清,史彬. 超深方块码头稳定性的离心模型试验[J]. J4, 2006, 36(03): 399 -403 .
[3] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289 -0294 .
[4] 孙永河,付晓飞,吕延防,付广,阎冬. 地震泵抽吸作用与油气运聚成藏物理模拟[J]. J4, 2007, 37(1): 98 -0104 .
[5] 刘正宏,徐仲元,杨振升,陈晓峰. 变质构造岩类型及其特征[J]. J4, 2007, 37(1): 24 -0030 .
[6] 谭惠,李殿超,杨殿范, 王瑛玮. 掺铁-TiO2/膨润土复合光催化材料制备及性能[J]. J4, 2007, 37(1): 204 -0208 .
[7] 董 军,张 晶,赵勇胜,张伟红,吕爱民,韩 融,刘莹莹,李志斌. 渗滤液污染物在地下环境中的生物地球化学作用[J]. J4, 2007, 37(3): 587 -0591 .
[8] 赵玉岩,郝立波,张志立,陆继龙,孙广瑞. 金属矿床勘查找矿信息系统的设计与实现[J]. J4, 2008, 38(1): 161 -0166 .
[9] 周睿,赵勇胜,吴倩芳,李红顺,任何军,屈智慧. 包气带介质截留不同龄垃圾渗滤液中的有机污染物[J]. J4, 2008, 38(6): 1032 -1036 .
[10] 郑培玺, 金巍, 周燕, 李建, 郑长青. 辽西地区台子里花岗质片麻岩锆石U-Pb年龄及其地质意义[J]. J4, 2009, 39(3): 455 -460 .