吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (3): 911-918.doi: 10.13278/j.cnki.jjuese.20190031

• 地球探测与信息技术 • 上一篇    

皮克特图版在含泥质砂岩储层测井解释评价中的改进及应用

丁磊, 张恒荣, 袁伟, 郑志锋, 王一   

  1. 中海石油(中国)有限公司湛江分公司, 广东 湛江 524057
  • 收稿日期:2019-02-21 发布日期:2020-05-29
  • 作者简介:丁磊(1990-),男,工程师,硕士,主要从事测井方法研究及软件研发相关工作,E-mail:dinglei7@cnooc.com.cn
  • 基金资助:
    中海石油(中国)有限公司科技项目(Y219R006.02.08)

Improvement and Application of Pickett Plot for Well Logging Interpretation of Argillaceous Formation

Ding Lei, Zhang Hengrong, Yuan Wei, Zheng Zhifeng, Wang Yi   

  1. Zhanjiang Branch of CNOOC Ltd., Zhanjiang 524057, Guangdong, China
  • Received:2019-02-21 Published:2020-05-29
  • Supported by:
    Supported by Science and Technology Program of CNOOC (China) Co., Ltd (Y219R006.02.08)

摘要: 经典皮克特图版由阿尔奇公式推导而来,但无法处理泥质砂岩储层。本文以南海西部海域W油田作为研究对象,从印度尼西亚公式出发,对经典皮克特图版进行改进,开发出了泥质砂岩皮克特图版。通过对比分析经典皮克特图版与泥质砂岩皮克特图版的不同,指出在含泥质砂岩储层测井解释评价中使用泥质砂岩皮克特图版的重要性,并提出利用迭代法精确求解地层水电阻率及岩电参数的方法。研究表明:使用改进的泥质砂岩皮克特图版计算得到的地层水电阻率与纯水层的计算结果保持一致;同时,相比于经验值,使用迭代法求解出的地层水电阻率及岩电参数与实际情况更为吻合。

关键词: 皮克特图版, 含泥质地层, 印度尼西亚公式, 含水饱和度, 储层

Abstract: The regular Pickett plot is derived from Archie formula, which is not suitable for the evaluation of argillaceous formation in the west of the South China Sea. The authors modified the regular Pickett plot based on the Indonesian formula, developed a new Pickett plot for argillaceous formations, and proposed a method for calculating water resistivity and geoelectric parameters accurately by iteration. The study shows that the formation water resistivity calculated by the improved Pickett plot of argillaceous sandstone is consistent with that calculated by pure water layer. In comparison with the empirical value, water resistivity and geoelectric parameters obtained by the iterative method are more consistent with the actual situation.

Key words: Pickett plot, argillaceous formation, Indonesian formula, water saturation, reservoirs

中图分类号: 

  • TE19
[1] 雍世和,张超谟. 测井数据处理与综合解释[M].东营:中国石油大学出版社, 2002:136-137. Yong Shihe, Zhang Chaomo. Logging Data Processing and Comprehensive Interpretation[M]. Dongying:Petroleum University Press, 2002:136-137.
[2] 洪有密. 测井原理与综合解释[M].东营:中国石油大学出版社, 2008:17-20. Hong Youmi. Logging Principles and Comprehensive Interpretation[M]. Dongying:Petroleum University Press, 2008:17-20.
[3] Aguilera R. Extensions of Pickett Plots for the Analysis of Shaly Formations by Well Logs[J]. The Log Analyst, 1990, 31(6):304-313.
[4] Ghorab M, Shazly T F, Ghaleb I E, et al. Using of Pickett's Plot in Shaly Formation to Estimate the Petro-Physical Exponents of Bahariya Formation in Sidi Barani Area, North Western Desert, Egypt[J]. Australian Journal of Basic and Applied Sciences, 2012, 6(13):399-413.
[5] Aguilera R. Incorporation Capillary Pressure, Pore Throat Aperture Radii, Height Above Free-Water Table, and Winland R35 Values on Pickett Plots[J]. AAPG Bulletin, 2002, 86(4):605-624.
[6] Aguilera R, Aguilera M S. The Integration of Capillary Pressures and Pickett Plots for Determination of Flow Units and Reservoir Containers[J]. SPE Reservoir Evaluation & Engineering, 2002, 5(6):465-471.
[7] El-Khadragy A A, Ghorab M A, Shazly T F, et al. Using of Pickett Plot in Determining the Reservoir Characteristics in Abu Roash Formation, El-Razzak Oil Field, North Western Desert, Egypt[J]. Egyptian Journal of Petroleum, 2014, 23:45-51.
[8] 张守如,马大洪. 皮克特交会图在泥质地层测井分析中的扩展应用[J].国外油气勘探, 1993, 5(3):362-365. Zhang Shouru, Ma Dahong. Extensions of Pickett Plots for the Analysis of Shaly Formations by Well Logs[J]. Equipment for Geophysical Prospecting, 1993,5(3):362-365.
[9] 焦巧平,杨艳凤. 毛管压力与Pickett图一体化确定流动单元和储集层[J].国外油气地质信息, 2003(3):98-104. Jiao Qiaoping, Yang Yanfeng. The Integration of Capillary Pressures and Pickett Plots for Determination of Flow Units and Reservoir Containers[J]. Oil & Gas Geology Information Abroad, 2003(3):98-104.
[10] 田中元,卞德智,陈昊,等. 改进的PICKETT法在Y油田低阻油层之别中的应用[J].石油学报, 2005, 26(4):81-84. Tian Zhongyuan, Bian Dezhi, Chen Hao, et al. Application of Improved PICKETT Method to Identification of Low-Resistivity Pays in Y Oilfield[J]. Acta Petrolei Sinica, 2005, 26(4):81-84.
[11] 何胜林,张恒荣,丁磊,等. 一种求取泥质砂岩储层地层水电阻率以及岩电参数的方法:201710705093.8[P]. 2018-12-06. He Shenglin, Zhang Hengrong, Ding Lei, et al. A Method for Calculating Formation Water Resistivity and Petro-Electric Parameters of Shaly Sandstone Reservoir:201710705093.8[P]. 2018-12-06.
[12] 张超谟,张占松,郭海敏. 水驱油电阻率与含水饱和度关系的理论推导和数值模拟研究[J].中国科学:D辑:地球科学, 2008, 38(增刊2):151-156. Zhang Chaomo, Zhang Zhansong, Guo Haimin. The Study of Theory Deduction and Numerical Simulation on the Relationship Bbetween Resistivity and Water Saturation of Water Flooding[J]. Science in China:Series D:Earth Sciences, 2008, 38(Sup.2):151-156.
[13] 蔡军,李茂文,何胜林. 海水注入开发中剩余油饱和度评价研究[J]. 石油钻采工艺, 2007, 29(6):77-79. Cai Jun, Li Maowen, He Shenglin. Research of Residual Oil Saturation Evaluation in High Salinity Water Injection Development[J]. Oil Drilling & Production Technology, 2007, 29(6):77-79.
[14] 梁忠奎. 复杂孔隙结构高不动水低阻油层识别评价[D]. 大庆:大庆石油学院, 2008:12-23. Liang Zhongkui. Evaluation of Complex Pore Structure High Immobile Water Low Resistivity Oil Layer[D]. Daqing:Daqing Pettoleum Institute, 2008:12-23.
[15] 杨春梅. 油田开发中后期测井响应变化机理及储层性质研究[D]. 北京:中国石油大学,2005:77. Yang Chunmei. Study on Reservoir Properties and Changes Mechanism of Well Logging Curves in the Middle-Later Period of Oilfield Development[D]. Beijing:China University of Petroleum, 2005:77.
[16] 杨春梅,王建强,张敏,等. 矿化度及水型变化对饱和度评价模型中mnB值的影响机理研究[J]. 地球物理学进展, 2006, 21(3):926-931. Yang Chunmei, Wang Jianqiang, Zhang Min, et al. Analysis of Saline Type and Salinity Effect on Parameters m, n and B of Saturation Evaluation Models[J]. Progress in Geophysics, 2006, 21(3):926-931.
[17] 朱广祥,郭秀军,余乐,等. 高黏粒含量海洋土电阻率特征分析及模型构建[J]. 吉林大学学报(地球科学版), 2019, 49(5):1457-1465. Zhu Guangxiang, Guo Xiujun, Yu Le, et al. Analysis on Resistivity Characteristics and Resistivity Model Building of Marine Soil with High Clay Content[J]. Journal of Jilin University (Earth Science Edition),2019,49(5):1457-1465.
[18] 申辉林,张立旭,谢莹峰,等. 地层水矿化度对含水饱和度精度的影响分析[J]. 中国石油大学学报(自然科学版), 2017, 41(2):88-93. Shen Huilin, Zhang Lixu, Xie Yingfeng, et al. Analysis for Effect of Variable Formation Water Salinity on Accuracy of Water Saturation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(2):88-93.
[1] 高坤顺, 叶涛, 孙哲, 鲁凤婷, 陈心路, 邓辉. 渤海海域JZ25-1S太古宇潜山储层特征及其油气产能差异控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(3): 694-704.
[2] 李勇, 陈世加, 尹相东, 何清波, 苏恺明, 肖正录, 邱雯, 何鑫. 储层中固体沥青研究现状、地质意义及其发展趋势[J]. 吉林大学学报(地球科学版), 2020, 50(3): 732-746.
[3] 蒙启安, 李军辉, 李跃, 邹越. 海拉尔—塔木察格盆地中部富油凹陷高含凝灰质碎屑岩储层成因及油气勘探意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 569-578.
[4] 侯伟, 赵天天, 张雷, 熊先钺, 许浩, 巢海燕, 张伟, 王伟, 张慧. 基于低场核磁共振的煤储层束缚水饱和度应力响应研究与动态预测——以保德和韩城区块为例[J]. 吉林大学学报(地球科学版), 2020, 50(2): 608-616.
[5] 苗长盛, 徐文, 刘玉虎, 谢荣祥. 松辽盆地南部火山岩储层特征[J]. 吉林大学学报(地球科学版), 2020, 50(2): 635-643.
[6] 赵汉卿, 陈晓明, 李超, 吴穹螈, 王迪. 渤海湾盆地垦利L油田古近系沙三上段优质储层物性控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(2): 653-661.
[7] 李博南, 曲寿利, 沈珲. 基于岩石物理模型的碳酸盐岩储层微观孔隙特征分析方法[J]. 吉林大学学报(地球科学版), 2020, 50(1): 285-293.
[8] 李红进, 张道勇, 葛云锦, 王翊超, 徐刚. 甘泉—富县地区长7致密砂岩储层成岩相的定量识别及其对含油性的控制作用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1529-1539.
[9] 迟唤昭, 董福湘, 薛晓刚, 刘财, 司考. 松辽盆地南部地区营城组典型火山机构地质特征[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1649-1657.
[10] 周舟, 金衍, 曾义金, 张旭东, 周健, 汪文智, 孟翰. 青海共和盆地干热岩地热储层水力压裂物理模拟和裂缝起裂与扩展形态研究[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1425-1430.
[11] 罗腾, 冯晅, 郭智奇, 刘财, 刘喜武. 基于模拟退火粒子群优化算法的裂缝型储层各向异性参数地震反演[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1466-1476.
[12] 陈思芮, 曲希玉, 王冠民, 王清斌, 曹英权. 渤中凹陷CFD18-2油田高岭石胶结作用及其对储层物性的影响[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1235-1246.
[13] 孙泽飞, 史建儒, 连碧鹏, 康志帅, 申建, 杨函. 紫金山地区煤系致密砂岩储层特征及主控因素[J]. 吉林大学学报(地球科学版), 2019, 49(4): 959-969.
[14] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
[15] 单祥, 郭华军, 郭旭光, 邹志文, 李亚哲, 王力宝. 低渗透储层孔隙结构影响因素及其定量评价——以准噶尔盆地金龙2地区二叠系上乌尔禾组二段为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 637-649.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!