吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (5): 1466-1476.doi: 10.13278/j.cnki.jjuese.20180255

• 地球探测与信息技术 • 上一篇    下一篇

基于模拟退火粒子群优化算法的裂缝型储层各向异性参数地震反演

罗腾1, 冯晅1, 郭智奇1, 刘财1, 刘喜武2,3,4   

  1. 1. 吉林大学地球探测科学与技术学院, 长春 130026;
    2. 页岩油气富集机理与有效开发国家重点实验室, 北京 100083;
    3. 中国石化页岩油气勘探开发重点实验室, 北京 100083;
    4. 中国石化石油勘探开发研究院, 北京 100083
  • 收稿日期:2018-10-08 发布日期:2019-10-10
  • 通讯作者: 郭智奇(1980-),男,教授,博士生导师,主要从事岩石物理、地震各向异性、油气储层预测等研究,E-mail:guozhiqi@jlu.edu.cn E-mail:guozhiqi@jlu.edu.cn
  • 作者简介:罗腾(1989-),男,博士研究生,主要从事地震各向异性正反演研究,E-mail:autumn2009lt@126.com
  • 基金资助:
    国家"十三五"重大专项(2017ZX05049-002);国家自然科学基金石油化工联合基金项目(U1663207);国家自然科学基金项目(41430322)

Seismic Inversion of Anisotropy Parameters of Fractured Reservoirs by Simulated Annealing and Particle Swarm Optimization

Luo Teng1, Feng Xuan1, Guo Zhiqi1, Liu Cai1, Liu Xiwu2,3,4   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. National Key Laboratory of Corporation of Shale Oil/Gas Enrichment Mechanism and Effective Development, Beijing 100083, China;
    3. SinoPEC Key Laboratory of Shale Oil/Gas Exploration and Production Technology, Beijing 100083, China;
    4. SinoPEC Petroleum Exploration and Production Research Institute, Beijing 100083, China
  • Received:2018-10-08 Published:2019-10-10
  • Supported by:
    Supported by National Key Projects During the 13th Five-Year Plan of China (2017ZX05049-002), NSFC and SinoPEC Joint Key Project (U1663207) and National Natural Science Foundation of China (41430322)

摘要: 发育垂直定向排列裂缝的地下岩石可等效为具有水平对称轴的横向各向同性(horizontal transverse isotropic,HTI)介质。针对HTI介质模型,本文研究了裂缝型储层的各向异性参数地震振幅随方位角变化(amplitude variations with azimuth,AVAZ)的反演方法。首先,在地震AVAZ反演流程中,提出采用模拟退火粒子群优化算法实现裂缝型储层各向异性参数反演。之后,通过理论模型测试,验证了基于模拟退火粒子群优化算法的地震AVAZ反演的有效性。最后,将反演方法应用于四川盆地龙马溪组页岩气储层实际方位地震数据;在反演之前先利用傅里叶级数方法估计裂缝方位并对实际数据进行方位校正,以提供更准确的输入数据;通过计算得到的P波、S波各向异性参数可用于评价裂缝发育程度。反演结果表明,研究区域构造顶部裂缝较发育,与地质基本理论一致,验证了反演方法的合理性。

关键词: HTI, 裂缝, 储层, 各向异性, 地震AVAZ, 反演, 四川盆地, 页岩气

Abstract: Underground rocks with vertical aligned fractures can be equivalent to horizontal transversely isotropic (HTI) media. For HTI medium model, the authors studied the inversion method to estimate anisotropic parameter using the seismic amplitude varying with azimuth (AVAZ) of fractured reservoirs. Firstly, in the seismic AVAZ inversion process, the simulated annealing particle swarm optimization algorithm was proposed to invert the anisotropic parameters of fractured reservoirs; then, the validity of seismic AVAZ inversion based on simulated annealing particle swarm optimization algorithm was verified by theoretical model test; finally, the inversion method was applied to the field azimuth seismic data of Longmaxi shale gas reservoir in Sichuan basin. Before inversion, the Fourier series method was used to estimate the fracture orientation and correct the field data to provide more accurate input data. The anisotropic parameters of P and S waves obtained by calculation can be used to evaluate the degree of fracture development. The inversion results show that the fractures on the top of the study area are well developed, which is consistent with the basic geological theory. It verifies the rationality of the inversion method and proves that the inversion results can provide a basis for reservoir fracture identification.

Key words: HTI, fracture, reservoirs, anisotropy, seismic AVAZ, inversion, Sishuan basin, shale gas

中图分类号: 

  • P631.4
[1] Crampin S. Effective Anisotropic Elastic Constants for Wave Propagation Through Cracked Solids[J]. Geophysical Journal of the Royal Astronomical Society, 1983, 76(1):135-145.
[2] Liu E, Martinez A. Seismic Fracture Characterization[M]. Houten:EAGE Publications, 2012.
[3] 张世俊,杨慧珠,董渊,等. 遗传算法反演HTI介质各向异性参数[J].石油地球物理勘探,2002, 37(1):24-28. Zhang Shijun, Yang Huizhu, Dong Yuan, et al. Inversion of Anisotropic Parameters in HTI Medium by Genetic Algorithm[J]. Oil Geophysical Prospecting, 2002, 37(1):24-28.
[4] 杜启振,董渊,杨慧珠. HTI介质横波正常时差速度反演[J]. 中国石油大学学报(自然科学版),2002, 26(2):26-30. Du Qizhen, Dong Yuan, Yang Huizhu. Inversion of Normal Time Difference Velocity of Shear Wave in HTI Medium[J]. Journal of the University of Petroleum (Nature Science Edition), 2002, 26(2):26-30.
[5] 孙炜,何治亮,李玉凤,等. 基于HTI介质各向异性正演的裂缝预测属性优选[J]. 石油物探,2014, 53(2):223-231. Sun Wei, He Zhiliang, Li Yufeng, et al.Seismic Attributes Optimization for Fractures Prediction Based on the Anisotropy Forwarding of the HTI Media[J]. Geophysical Prospecting for Petroleum, 2014, 53(2):223-231.
[6] 窦喜英,韩立国,刘春成,等. 裂缝型HTI介质中的弹性阻抗[J]. 吉林大学学报(地球科学版),2012,42(4):1192-1198. Dou Xiying, Han Liguo, Liu Chuncheng, et al. Elastic Impedance in Fractured HTI Media[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(4):1192-1198.
[7] 范晓敏,李舟波. 裂缝性碳酸盐岩储层声波时差曲线的波动和增幅分析[J]. 吉林大学学报(地球科学版),2007, 37(1):168-173. Fan Xiaomin, Li Zhoubo. Analysis of Fluctuation and Amplitude Increase in Sonic Logs Caused by Fractures in Carbonate Rocks[J]. Journal of Jilin University (Earth Science Edition), 2007, 37(1):168-173.
[8] 杜启振,孔丽云,韩世春. 裂缝诱导各向异性双孔隙介质波场传播特征[J]. 地球物理学报,2009, 52(4):1049-1058. Du Qizhen, Kong Liyun, Han Shichun. Wavefield Propagation Characteristics in the Fracture-Induced Anisotropic Double-Porosity Medium[J]. Chinese Journal of Geophysics, 2009, 52(4):1049-1058.
[9] 李春鹏,印兴耀,刘志国,等. 裂缝型储层预测的各向异性梯度反演方法研究[J]. 石油物探,2017, 56(6):835-840. Li Chunpeng, Yin Xingyao, Liu Zhiguo, et al. An Anisotropic Gradient Inversion for Fractured Reservoir Prediction[J]. Geophysical Prospecting for Petroleum, 2017, 56(6):835-840.
[10] Thomsen L. Weak Elastic Anisotropy[J]. Geophysics, 1986, 51(10):1954-1966.
[11] Ruger A. P-Wave Reflection Coefficients for Transversely Isotropic Models with Vertical and Horizontal Axis of Symmetry[J]. Geophysics, 1997, 62:713-722.
[12] Rüger A. Variation of P-Wave Reflectivity with Offset and Azimuth in Anisotropic Media[J]. Geophysics, 1998, 63(63):935-947.
[13] Mallick S, Meister L J, Chambers R E, et al. Determination of the Principal Directions of Azimuthal Anisotropy from P-Wave Seismic Data[J]. Geophysics, 1998, 63(2):692-706.
[14] 朱培民,王家映,於文辉,等. 用纵波AVO数据反演储层裂隙密度参数[J]. 石油物探,2001, 40(2):1-12. Zhu Peimin, Wang Jiaying, Yu Wenhui, et al. Inverting Reservoir Crack Density Using P-Wave AVO Data[J]. Geophysical Prospecting for Petroleum, 2001, 40(2):1-12.
[15] Bachrach R, Sengupta M, Salama A, et al. Reconstruction of the Layer Anisotropic Elastic Parameters and High-Resolution Fracture Characterization from P-Wave Data:A Case Study Using Seismic Inversion and Bayesian Rock Physics Parameter Estimation[J]. Geophysical Prospecting, 2009, 57(2):253-262.
[16] 张广智,陈怀震,印兴耀,等. 基于各向异性AVO的裂缝弹性参数叠前反演方法[J]. 吉林大学学报(地球科学版),2012, 42(3):845-851. Zhang Guangzhi, Chen Huaizhen, Yin Xingyao, et al. Method of Fracture Elastic Parameter Inversion Based on Anisotropic AVO[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(3):845-851.
[17] 刘财,刘宇巍,冯晅,等. 基于方位相交的纵波AVA数据运用SVD反演HTI介质裂缝密度[J]. 吉林大学学报(地球科学版),2013, 43(5):1655-1662. Liu Cai, Liu Yuwei, Feng Xuan, et al. Invert Crack Density of HTI Media by Using SVD Based on PP-Wave AVA Data from Crossing Seismic Survey Lines[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(5):1655-1662.
[18] 李博南,刘财,郭智奇. 基于等效介质模型和频变AVO反演的裂缝储层参数估算方法[J]. 吉林大学学报(地球科学版),2017, 47(1):234-244. Li Bonan, Liu Cai, Guo Zhiqi. Estimation of Fractured Reservoir Parameters Based on Equivalent Media Model and Frequncy-Dependent AVO Inversion[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(1):234-244.
[19] Liu B, Yin X, Yang F. Anisotropic Parameters Inversion of Fractured Reservoir Based on Orthogonal Azimuth Reflection Coefficient Difference[C]//Beijing 2014 International Geophysical Conference & Exposition. Beijing:Society of Exploration Geophysicists, 2014:584-587.
[20] Bakulin A, Tsvankin I, Grechka V. Estimation of Fracture Parameters from Reflection Seismic Data:Part I:HTI Model Due to A Single Fracture Set[J]. Geophysics, 2000, 65(6):1788-1802.
[21] Kennedy J, Eberhart R. Particle Swarm Optimization[C]//International Conference on Neural Networks. Perth:IEEE, 2002:1942-1948.
[22] Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by Simulated Annealing[J]. Science, 1983(220):671-680.
[23] 高鹰,谢胜利. 基于模拟退火的粒子群优化算法[J]. 计算机工程与应用,2004, 40(1):47-50. Gao Ying, Xie Shengli. Particle Swarm Optimization Algorithms Based on Simulated Annealing[J]. Computer Engineering and Applications, 2004, 40(1):47-50.
[24] Rüger A. Reflection Coefficients and Azimuthal AVO Analysis in Anisotropic Media[M]. Tulsa:Society of Exploration Geophysicists, 2002.
[25] Sayers C M, Dean S. Azimuth-Dependent AVO in Reservoirs Containing Non-Orthogonal Fracture Sets[J]. Geophysical Prospecting, 2010, 49(1):100-106.
[26] Ikelle L T. Amplitude Variations with Azimuths (AVAZ) Inversion Based on Linearized Inversion of Common Azimuthal Sections[M]. Tulsa:Society of Exploration Geophysicists, 1996.
[27] Downton J, Russell H. Azimuthal Fourier Coefficients:A Simple Method to Estimate Fracture Parameters[C]//Seg Technical Program Expanded. Tulsa:Society of Exploration Geophysicists,2011:269-273.
[28] 郭彤楼,张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发,2014, 41(1):28-36. Guo Tonglou, Zhang Hanrong. Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1):28-36.
[1] 周舟, 金衍, 曾义金, 张旭东, 周健, 汪文智, 孟翰. 青海共和盆地干热岩地热储层水力压裂物理模拟和裂缝起裂与扩展形态研究[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1425-1430.
[2] 陈思芮, 曲希玉, 王冠民, 王清斌, 曹英权. 渤中凹陷CFD18-2油田高岭石胶结作用及其对储层物性的影响[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1235-1246.
[3] 洪勃, 李喜安, 王力, 李林翠. 延安Q3原状黄土渗透各向异性及微结构分析[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1389-1397.
[4] 肖汉, 王德利. 基于快速匹配法的VTI介质走时计算[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1160-1168.
[5] 王璐, 杨胜来, 彭先, 刘义成, 徐伟, 邓惠. 缝洞型碳酸盐岩气藏多类型储集层孔隙结构特征及储渗能力——以四川盆地高石梯-磨溪地区灯四段为例[J]. 吉林大学学报(地球科学版), 2019, 49(4): 947-958.
[6] 孙泽飞, 史建儒, 连碧鹏, 康志帅, 申建, 杨函. 紫金山地区煤系致密砂岩储层特征及主控因素[J]. 吉林大学学报(地球科学版), 2019, 49(4): 959-969.
[7] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
[8] 单祥, 郭华军, 郭旭光, 邹志文, 李亚哲, 王力宝. 低渗透储层孔隙结构影响因素及其定量评价——以准噶尔盆地金龙2地区二叠系上乌尔禾组二段为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 637-649.
[9] 樊冬艳, 孙海, 姚军, 李华锋, 严侠, 张凯, 张林. 增强型地热系统不同注采井网参数分析[J]. 吉林大学学报(地球科学版), 2019, 49(3): 797-806.
[10] 张斌, 顾国忠, 单俊峰, 王璞珺, 郭强, 徐琛琛, 杨帆, 陈星州. 辽河东部凹陷新生界火成岩岩性、岩相特征和储层控制因素[J]. 吉林大学学报(地球科学版), 2019, 49(2): 279-293.
[11] 李欢, 王清斌, 庞小军, 冯冲, 刘晓健. 渤海湾盆地辽东凹陷旅大29构造沙二段近源砂砾岩体优质储层形成机理[J]. 吉林大学学报(地球科学版), 2019, 49(2): 294-309.
[12] 张文强, 殷长春, 刘云鹤, 张博, 任秀艳. 基于场延拓的海洋可控源电磁正演模拟及各向异性特征识别[J]. 吉林大学学报(地球科学版), 2019, 49(2): 578-590.
[13] 杨悦, 翁爱华, 张艳辉, 李世文, 李建平, 唐裕. 基于可控源电磁法阻抗信息的有限内存拟牛顿法三维反演[J]. 吉林大学学报(地球科学版), 2019, 49(2): 591-602.
[14] 周阳, 苏生瑞, 李鹏, 马洪生, 张晓东. 板裂千枚岩微观结构与力学性质[J]. 吉林大学学报(地球科学版), 2019, 49(2): 504-513.
[15] 王修齐, 滕龙, 郑红军, 方朝刚, 张训华. 下扬子丰城-乐平地区二叠系乐平组页岩气潜力综合评价[J]. 吉林大学学报(地球科学版), 2019, 49(1): 248-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!