吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (1): 185-193.doi: 10.13278/j.cnki.jjuese.20190049

• 地质工程与环境工程 • 上一篇    

不同初始含水量条件下的堰塞坝溃决机理

蒋先刚1,2, 吴雷1   

  1. 1. 四川农业大学土木工程学院, 成都 610041;
    2. 中国科学院山地灾害与地表过程重点实验室(中国科学院成都山地灾害与环境研究所), 成都 610041
  • 收稿日期:2019-02-25 发布日期:2020-02-11
  • 作者简介:蒋先刚(1987-),男,讲师,博士,主要从事山地灾害形成机制及防治方面的研究工作,E-mail:jxgjim@163.com
  • 基金资助:
    国家自然科学基金项目(41807289);四川省教育厅基金项目(18ZA0374)

Influence of Initial Soil Moisture on Breaching Mechanism of Natural Dam

Jiang Xiangang1,2, Wu Lei1   

  1. 1. School of Civil Engineering, Sichuan Agricultural University, Chengdu 610041, China;
    2. Key Laboratory of Mountain Hazards and Earth Surface Processes, Chinese Academy of Sciences(Institute of Mountain Hazards and Environment Chinese Academy of Sciences), Chengdu 610041, China
  • Received:2019-02-25 Published:2020-02-11
  • Supported by:
    Supported by National Natural Science Foundation of China(41807289)and Project of Education Department of Sichuan Province(18ZA0374)

摘要: 在影响堰塞坝溃决的众多因素中,初始含水量影响堰塞坝的溃决机理仍不清楚。通过开展不同初始含水量条件下的水槽试验,详细探究了初始含水量对溃决过程的影响规律。结果表明:不同初始含水量条件下的溃决过程均具有3个典型阶段,分别是牵引侵蚀过程、溯源侵蚀过程和水沙运动再平衡过程;峰值流量随初始含水量的增大而增大,而溃决历时和残留坝体高度随初始含水量的增大而减小;随初始含水量的增大,溯源侵蚀作用逐渐减弱,牵引侵蚀作用增强;随初始含水量的增大,溃口展宽率降低,侵蚀率增大;初始含水量小于7.8%时,平均侵蚀率增长缓慢,大于7.8%后,平均侵蚀率增长迅速,且10.3%初始含水量对应的平均侵蚀率约为7.8%初始含水量的2倍;溃口宽深比在溃决的前两阶段随初始含水量的增大而减小;溃决结束后的宽深比随含水量的增大呈先趋近于1.00、后远离1.00的演变。

关键词: 初始含水量, 堰塞坝, 漫顶溃决

Abstract: The breaching process of natural dams is influenced by many factors. However, it is still unclear about the effects of initial soil moisture on the discharge hydrograph and breach evolution. In this study, we conducted several laboratory tests to study how the initial soil moisture influences the breaching process of natural dams. The results show that there were three periods with different breaching characteristics in the breaching process with different initial soil moistures, namely the tractive erosion, the backward erosion, and the water and sand movement rebalance. The peak discharge increased with the increase of initial soil moisture. However, the breaching duration and dam height after dam failure decreased with the increase of initial soil moisture. The intensity of backward erosion decreased with the increase of initial soil moisture;in contrast, the tractive erosion enhanced with the increase of initial soil moisture. The greater the initial soil moisture was, the larger the incision rate was, and the incision rate increased slowly when the initial soil moisture was less than 7.8%, otherwise the incision rate increased quickly. In addition, the average incision rate at an initial water content of 10.3% was twice that of the initial water content of 7.8%. The ratio of breach width to depth decreased as the initial soil moisture increased before the last period. The ratio of breach width to depth after dam failure decreased with the increasing of initial soil moisture, which tended to be 1.00 and then less than 1.00 with increasing of the initial soil moisture.

Key words: initial soil moisture, natural dam, overtopping failure

中图分类号: 

  • P642.22
[1] Costa J E, Schuster R L. Formation and Failure of Natural Dams[J]. Geological Society of America Bulletin, 1988, 100(7):1054-1068.
[2] Casagli N, Ermini L, Rosati G. Determining Grain Size Distribution of the Material Composing Landslide Dams in the Northern Apennines:Sampling and Processing Methods[J]. Engineering Geology, 2003, 69(1):83-97.
[3] Korup O. Recent Research on Landslide Dams:A Literature Review with Special Attention to New Zealand[J]. Progress in Physical Geography, 2002, 26(2):206-235.
[4] Miller B G N,Cruden D M. The Eureka River Landslide and Dam, Peace River Lowlands, Alberta[J]. Canadian Geotechnical Journal, 2002, 39(4):863-878.
[5] Dai F C, Lee C F, Deng J H, et al.The 1786 Earthquake-Triggered Landslide Dam and Subsequent Dam-Break Flood on the Dadu River, Southwestern China:Reply[J]. Geomorphology, 2005, 65(3):205-221.
[6] Costa J E. The Formation and Failure of Natural Dams[J]. Geological Society of America Bulletin, 1988, 100(7):1054-1068.
[7] Morris M, Hanson G, Hassan M. Improving the Accuracy of Breach Modelling:Why are We not Progressing Faster?[J]. Journal of Flood Risk Management, 2008, 1(3):150-161.
[8] Cao Z, Yue Z, Pender G. Landslide Dam Failure and Flood Hydraulics:Part I:Experimental Investigation[J]. Nature Hazards, 2011, 59(2):1003-1019.
[9] Frank P J. Hydraulics of Spatial Dike Breaches[D]. Zurich:ETH Zurich, 2016.
[10] Walder J S, Iverson R M, Godt J W, et al. Controls on the Breach Geometry and Flood Hydrograph During Overtopping of Noncohesive Earthen Dams[J]. Water Resources Research, 2015, 51(8):6701-6724.
[11] Rifai I,Erpicum S, Archambeau P, et al. Overtopping Induced Failure of Noncohesive, Homogeneous Fluvial Dikes[J]. Water Resources Research,2017, 53(4):3373-3386
[12] Coleman S E, Andrews D P, Webby M G. Overtopping Breaching of Noncohesive Homogeneous Embankments[J]. Journal of Hydraulic Engineering, 2004, 128(9):829-838.
[13] Zhu Y H, Visser P J,Vrijling J K, et al. Experimental Investigation on Breaching of Embankments[J]. Science in China:Series E:Technological Sciences, 2011, 54(1):148-155.
[14] Schmocker L, Frank P J, Hager W H. Overtopping Dike-Dreach:Effect of Grain Size Distribution[J]. Journal of Hydraulic Research, 2014, 52(4):559-564.
[15] Xiangang J, Jiahua H, Yunwei W, et al.The Influence of Materials on the Breaching Process of Natural Dams[J]. Landslides, 2018, 15(2):243-255.
[16] 付建康,罗刚,胡卸文.滑坡堰塞坝越顶溢流破坏的物理模型实验[J].吉林大学学报(地球科学版),2018,48(1):203-212. Fu Jiankang, Luo Gang, Hu Xiewen. Physical Model Experiment on Overtopping Overflow Failure of Landslide Dam[J]. Journal of Jilin University(Earth Science Edition), 2018,48(1):203-212.
[17] Al-Riffai M. Experimental Study of Breach Mechanics in Overtopped Noncohesive Earthen Embankments[D]. Ottawa:Ottawa University, 2014.
[18] Jiang X, Wei Y, Wu L, et al.Laboratory Experiments on Failure Characteristics of Non-Cohesive Sediment Natural Dam in Progressive Failure Mode[J]. Environmental Earth Sciences, 2019, 78(17):538.
[19] Winterwerp J C, van Kesteren W G M. Introduction to the Physics of Cohesive Sediment in the Marine Environment[M]. Amsterdam:Elsevier, 2004.
[20] 四川省水利水电厅.四川省中小流域暴雨洪水计算手册[M].成都:四川省水利水电厅水文总站出版社, 1984. Water Resources Department of Sichuan Province. Storm Flood Computation Handbook of Small Watershed in Sichuan Province[M]. Chengdu:Books Press of Hydrological Terminus in Sichuan Province Water Resources and Power Authority,1984.
[21] van Emelen S, Zech Y, Soares-Frazao S. Impact of Sediment Rransport Formulations on Breaching Modelling[J]. Journal of Hydraulic Research, 2015, 53(1):60-72.
[22] 陈海明, 班凤其, 刘小伟. 非饱和土抗剪强度指标cФ值与含水量ω的关系[J]. 合肥工业大学学报(自然科学版), 2006,29(6):736-738. Chen Haiming, Ban Fengqi, Liu Xiaowei. Relationship Between Water Content ω and Unsaturated Soil Shear Strength Indices c and Ф[J]. Journal of Hefei University of Technology (Natural Science), 2006,29(6):736-738.
[23] 周春梅, 赵子鹏, 鲁阳. 含水量对滑带土强度变形参数及滑坡稳定性的影响[J]. 防灾减灾工程学报, 2016,36(2):213-219. Zhou Chunmei, Zhao Zipeng, Lu Yang. The Influence of Water Content on Strength and Deformation Parameters of Sliding Zone and Slope Stability[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016,36(2):213-219.
[24] Cividini A, Gioda G. Finite Element Approach to the Erosion and Transport of Fine Particles in Granular Soils[J]. International Journal Geomechanics, 2004, 3(4):191-198.
[25] Papamichos E, Vardoulakis I. Sand Erosion with a Porosity Diffusion Law[J]. Computers and Geotechnics, 2005, 32(1):47-58.
[26] 唐建一,徐东升,刘华北.含石量对土石混合体剪切特性的影响[J].岩土力学,2018,39(1):93-102. Tang Jianyi, Xu Dongsheng, Liu Huabei. Effect of Gravel Content on Shear Behavior of Sand-Gravel Mixture[J]. Rock and Soil Mechanics, 2018,39(1):93-102.
[27] Huang C H, Laflen J M, Bradford J M. Evaluation of the Detachment-Transport Coupling Concept in the WEPP Rill Erosion Equation[J]. Soil Science Society of America Journal, 1996, 60(3):734.
[28] Annandale G W. Scour Technology:Mechanics and Engineering Practice[M]. New York:McGraw-Hill, 2006:430.
[1] 付建康, 罗刚, 胡卸文. 滑坡堰塞坝越顶溢流破坏的物理模型实验[J]. 吉林大学学报(地球科学版), 2018, 48(1): 203-212.
[2] 郑光,许强,林峰,巨能攀,邓茂林,汪新芳. 2012年6·29贵州岑巩龙家坡滑坡灾害的基本特征与成因机理:一个由侧向剪切扰动诱发大型滑坡的典型案例[J]. 吉林大学学报(地球科学版), 2014, 44(3): 932-945.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!