吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (6): 1660-1674.doi: 10.13278/j.cnki.jjuese.20190058

• 地质与资源 • 上一篇    

中非卢菲里安地区铀矿化特征与资源潜力分析

孙宏伟1,2, 王杰1,2, 任军平1,2, 陈文3, 唐文龙1,2, 古阿雷1,2, 左立波1,2, 邢仕4, 刘子江4   

  1. 1. 中国地质调查局天津地质调查中心, 天津 300170;
    2. 华北地质科技创新中心, 天津 300170;
    3. 中信矿业(赞比亚)有限公司, 赞比亚 卢萨卡, P. O. Box. 50135;
    4. 河北省地质矿产开发局第五地质大队, 河北 唐山 063000
  • 收稿日期:2019-03-26 发布日期:2020-12-11
  • 作者简介:孙宏伟(1986-),男,工程师,主要从事矿物学、岩石学、矿床学方面的研究,E-mail:shwcub@163.com
  • 基金资助:
    商务部援外项目([2015]352,[2012]558);中国地质调查局项目(DD20201150,1212011220910)

Analysis of Uranium Mineralization Characteristics and Resource Potential in Lufilian Area, Central Africa

Sun Hongwei1,2, Wang Jie1,2, Ren Junping1,2, Chen Wen3, Tang Wenlong1,2, Gu Alei1,2, Zuo Libo1,2, Xing Shi4, Liu Zijiang4   

  1. 1. Tianjin Center, China Geological Survey, Tianjin 300170, China;
    2. North China Center for Geoscience Innovation, China Geological Survey, Tianjin 300170, China;
    3. The Zhongxin Mining Company of Zambia, Lusaka, P. O. Box. 50135, Zambia;
    4. No.5 Geological Team, Hebei Bureau of Geology and Mineral Resources Exploration, Tangshan 063000, Hebei, China
  • Received:2019-03-26 Published:2020-12-11
  • Supported by:
    Supported by Foreign Aid Projects of the Ministry of Commerce ([2015]352,[2012]558) and Project of China Geolo-gical Survey (DD20201150, 1212011220910)

摘要: 中非卢菲里安地区以铜钴资源闻名于世,同时也赋存一定的铀矿资源。铀成矿作用分别与大陆裂谷及盆地成岩期(876~823 Ma)、早期洋盆形成或大陆碰撞期(720~652 Ma)、卢菲里安变质高峰期(550~530 Ma)相对应。受区域构造活动影响形成的多期次热流体,从基底及加丹加超群富铀岩石萃取铀元素并在构造发育的区域富集成矿为其主要的成矿模式,其变质基底或班委乌卢基底可能提供了铀物质来源,热流体为载体,断裂及穹窿构造则提供通道与空间。含铀矿体多受地层及构造双重控制,围岩褐铁矿化及方柱石化对找矿具有指示意义。研究区内铀矿成矿条件较好,下罗安群受断裂及逆冲推覆构造影响强烈且蚀变较为发育的区域为有利的找矿前景区。

关键词: 铀矿, 地质特征, 资源潜力, 中非, 卢菲里安

Abstract: The Lufilian region of Central Africa is well known for its world class copper and cobalt deposits. It also hosts uranium resources. Uranium mineralization events include continental rift and basin diagenesis (876-823 Ma), early oceanic basin formation or continental collision (720-652 Ma), and Lufilian peak metamorphism (550-530 Ma). The main metallogenic model includes the extraction of uranium from the basement and the uranium-rich rocks of Katanga Super-Group, and enrichment of uranium in tectonically modified areas. The metamorphic basement or Bangweulu basement may provide uranium sources, the thermal fluids may serve as carrier, and fractures and dome structures may serve as channels and locations. The uranium-bearing ore bodies are mostly controlled by strata and structures, and limonitization and scapolitization of surrounding rocks are of direct significance for prospecting. The study area is found to be a high-potential uranium mineralization area. The areas where the strata of the Lower Roan Group are strongly influenced by faults and thrust nappe structures with relatively developed alterations are favorable for prospecting.

Key words: uranium, geological features, resource potential, Central Africa, Lufilian area

中图分类号: 

  • P612
[1] Cuney M, Kyser T K. Recent and Not-So-Recent Developments in Uranium Deposits and Implication for Exploration[M]. Quebec:Mineralogical Association of Canada, 2008.
[2] 蔡煜琦,张金带,李子颖,等. 中国铀矿资源特征及成矿规律概要[J].地质学报, 2015, 89(6):1051-1069. Cai Yuqi, Zhang Jindai, Li Ziying, et al. Outline of Uranium Resources Characteristics and Metallogenetic Regularity in China[J]. Acta Geologica Sinica, 2015, 89(6):1051-1069.
[3] 张金带,李子颖,蔡煜琦,等.全国铀资源潜力评价工作进展与主要成果[J].铀矿地质, 2012, 26(6):321-326. Zhang Jindai, Li Ziying, Cai Yuqi, et al. The Main Advance and Achievements in the Potential Evaluation of Uranium Resource in China[J]. Uranium Geology, 2012, 26(6):321-326.
[4] OECD/NEA-IAEA. Uranium Resources, Production and Demand, 2018 Red Book[M]. Paris:OECD, 2018.
[5] Cailteux J L H, Kampunzu A B, Lerouge C, et al. Genesis of Sediment-Hosted Stratiform Copper-Cobalt Deposits, Central African Copperbelt[J]. Journal of Africa Earth Sciences, 2005, 42(1):134-158.
[6] 孙宏伟,任军平,王杰,等.中非卢菲里安地区Pb-Zn-(Cu)矿床地质特征及找矿方向[J].地质与勘探, 2019, 55(4):1101-1116. Sun Hongwei, Ren Junping, Wang Jie, et al. Geological Characteristics and Prospecting Direction of Pb-Zn-(Cu) Deposits in the Lufilian Area, Central-Africa[J]. Geology and Exploration, 2019, 55(4):1101-1116.
[7] Muchez P, Mayer A S, Desouky H A E, et al. Diagenetic Origin and Multiphase Modification of World-Class Cu-Co Deposits in the Central African Copperbelt[J]. Mineral Deposita, 2015, 50(4):437-447.
[8] Meneghel L. The Occurrence of Uranium in the Katanga System of Northwestern Zambia[J]. Economic Geology, 1981, 76(1):56-68.
[9] Cosi M, De Bonis A, Gosso G, et al. Late Proterozoic Thrust Tectonics, High-Pressure Metamorphism and Uranium Mineralization in the Domes Area, Lufilian Arc, Northwestern Zambia[J]. Precambrian Research, 1992, 58(1/2/3/4):215-240.
[10] 孙宏伟,王杰,任军平,等.中非加丹加-赞比亚多金属成矿带成矿演化及找矿潜力分析[J].地质科技情报, 2019, 38(1):121-131. Sun Hongwei, Wang Jie, Ren Junping, et al. Metallogenic Evolution and Prospecting Potential of Katanga-Zambia Polymetallic Metallogenic Belt in Central Africa[J]. Geological Science and Technology Information, 2019, 38(1):121-131.
[11] Kampunzu A B, Cailteux J L H, Kamona A F, et al. Sediment-Hosted Zn-Pb-Cu Deposits in the Central African Copperbelt[J]. Ore Geology Reviews, 2009, 35(3/4):263-297.
[12] Eglinger A, Mayer A S, Vanderhaeghe O, et al. Geochemical Signatures of Uranium Oxides in the Lufilian Belt:From Unconformity-Related to Synmetamorphic Uranium Deposits During the Pan-African Orogenic Cycle[J]. Ore Geology Reviews, 2013, 54:197-213.
[13] François A. Stratigraphy, Tectonics and Mineralization in the Copper arc of Shaba (Rep of Zaire)[C]//Centenary of the Geological Society of Belgium. Liège:Université de Liège, 1974:79-101.
[14] Eglinger A,Vanderhaeghe O, Mayer A S A, et al. Tectono-Metamorphic Evolution of the Internal Zone of the Pan-African Lufilian Orogenic Belt (Zambia):Implications for Crustal Reworking and Syn-Orogenic Uranium Mineralizations[J]. Lithos, 2016, 240:167-188.
[15] Eglinger A, Tarantola A, Durand C, et al. Uranium Mobilization by Fluids Associated with Ca-Na Metasomatism:A P-T-t Record of Fluid-Rock Interactions During Pan-African Metamorphism (Western Zambian Copperbelt)[J]. Chemical Geology, 2014, 386:218-237.
[16] De Waele B, Johnson S P, Pisarevsky S A. Palaeoproterozoic to Neoproterozoic Growth and Evolution of the Eastern Congo Craton:Its Role in the Rodinia Puzzle[J]. Precambrian Research, 2008, 160(1):127-141.
[17] 孙宏伟,唐文龙,刘晓阳,等.非洲东南部造山型金矿成矿环境与资源潜力分析[J].吉林大学学报(地球科学版), 2018, 48(6):1654-1668. Sun Hongwei, Tang Wenlong, Liu Xiaoyang, et al. Metallogenic Environment and Resources Potential of Orogenic Gold Deposits in South-East Africa[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(6):1654-1668.
[18] Rainaud C, Master S, Armstrong R A, et al. Monazite U-Pb Dating and 40Ar-39Ar Thermochronology of Metamorphic Events in the Central African Copperbelt During the Pan-African Lufilian Orogeny[J]. Journal of Africa Earth Sciences, 2005, 42(1):183-199.
[19] Hanson R E, Wardlaw M S, Wilson T J, et al. U-Pb Zircon Ages from the Hook Granite Massif and Mwembeshi Dislocation:Constraints on Pan-African Deformation, Plutonism, and Transcurrent Shearing in Central Zambia[J]. Precambrian Research, 1993, 63(3/4):189-209.
[20] John T, Schenk V, Mezger K, et al. Timing and PT Evolution of Whiteschist Metamorphism in the Lufilian Arc-Zambezi Belt Orogen (Zambia):Implications for the Assembly of Gondwana[J]. Geology, 2004, 112(1):71-90.
[21] Batumike J M, O'Reilly S Y,Griffin W L, et al. Up-Pb and Hf-Isotope Analyses of Zircon from the Kundelungu Kimberlites, D R Congo:Implications for Crustal Evolution[J]. Precambrian Research, 2007, 156(3/4):195-225.
[22] Cailteux J L H, Kampunzu A B, Lerouge C. The Neoproterozoic Mwashva-Kansuki Sedimentary Rock Succession in the Central African Copperbelt, Its Cu-Co Mineralisation, and Regional Correlations[J]. Gondwana Research, 2007, 11(3):414-431.
[23] Porada H. Pan-African Rifting and Orogenesis in Southern to Equatorial Africa and Eastern Brazil[J]. Precambrian Research, 1989, 44(2):103-136.
[24] Porada H, Berhorst V. Towards a New Understanding of the Neoproterozoicearly Paleozoic Lufilian and Northern Zambezi Belts in Zambia and the Democratic Republic of Congo[J]. Journal of Africa Earth Sciences, 2000, 30(3):727-771.
[25] Cailteux J L H. Lithostratigraphy of the Neoproterozoic Shaba-Type (Zaire) Roan Supergroup and Metallogenesis of Associated Stratiform Mineralization[J]. Journal of Africa Earth Sciences, 1994, 19(4):279-301.
[26] Batumike J M, Cailteux J L H, Kampunzu A B. The Neoproterozoic Nguba and Kundelungu Successions in the Central African Copperbelt:Lithostratigraphy, Basin Development and Regional Correlations[J]. Gondwana Research, 2007, 11:432-447.
[27] Muchez P, Vanderhaeghen P, Desouky H, et al. Anhydrite Pseudomorphs and the Origin of Stratiform Cu-Co Ores in the Katangan Copperbelt (Democratic Republic of Congo)[J]. Mineral Deposita, 2008, 43(5):575-589.
[28] Tembo F, Kampunzu A B, Porada H. Tholeiitic Magmatism Associated with Continental Rifting in the Lufilian Fold Belt of Zambia[J]. Journal of Africa Earth Sciences, 1999, 28(2):403-425.
[29] John T, Schenk V, Haase K, et al. Evidence for a Neoproterozoic Ocean in South-Central Africa from Mid-Oceanic-Ridge-Type Geochemical Signatures and Pressure-Temperature Estimates of Zambian Eclogites[J]. Geology, 2003, 31(3):243-246.
[30] Garlick W G,Fleischer V D. Sedimentary Environment of Zambian Copper Deposition[J]. Journal of Geological Science, 1972, 51(3):277-298.
[31] Armstrong R A, Master S, Robb L J. Geochronology of the Nchanga Granite, and Constraints on the Maximum Age of the Katanga Supergroup, Zambian Copperbelt[J]. Journal of Africa Earth Sciences, 2005, 42(1):32-40.
[32] Johnson S P, De Waele B, Evans D, et al. Geochronology of the Zambezi Supracrustal Sequence, Southern Zambia:A Record of Neoproterozoic Divergent Processes Along the Southern Margin of the Congo Craton[J]. Journal of Geology, 2007, 115(3):355-374.
[33] Armstrong R A, Robb L J, Master S, et al. New U-Pb Age Constraints on the Katanga Sequence, Central African Copperbelt[J]. Journal of Africa Earth Sciences, 1999, 28(1):6-7.
[34] Key R M, Liyungu A K, Njamu F M, et al. The Western Arm of the Lufilian Arc in NW Zambia and Its Potential for Copper Mineralization[J]. Journal of Africa Earth Sciences, 2001, 33(3):503-528.
[35] Katongo C, Koller F, Kloetzli U, et al. Petrography, Geochemistry and Geochronology of Granitoid Rocks in the Neoproterozoic-Paleozoic Lufilian-Zambezi Belt, Zambia:Implications for Tectonic Setting and Regional Correlation[J]. Journal of Africa Earth Sciences, 2004, 40(5):219-244.
[36] Kampunzu A B, Tembo F, Matheis G, et al. Geochemistry and Tectonic Setting of Mafic Igneous Units in the Neoproterozoic Katangan Basin, Central Africa:Implications for Rodinia Break-Up[J]. Gondwana Research, 2000, 3(2):125-153.
[37] Binda P L, Van Eden J G. Sedimentological Evidence on the Origin of the Precambrian Great Conglomerate (Kundelungu Tillite), Zambia[J]. Palaeogeogr, Palaeoclimatol, Palaeoecol, 1972, 12(3):151-168.
[38] Kampunzu A B, Kapenda D, Manteka B. Basic Magmatism and Geotectonic Evolution of the Pan African Belt in Central Africa:Evidence from the Katangan and West Congolian Segments[J]. Tectonophysics, 1991, 190(2/3):363-371.
[39] Condon D, Zhu M, Bowring S, et al. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China[J]. Science, 2005, 308:95-98.
[40] Master S, Rainaud C, Armstrong R A, et al. Provenance Ages of the Neoproterozoic Katanga Supergroup (Central African Copperbelt), with Implications for Basin Evolution[J]. Journal of Africa Earth Sciences, 2005, 42(1):41-60.
[41] Derriks J J,Vaes J F. The Shinkolobwe Uranium Deposit:Current State of Knowledge from the Point of View of Geology and Metallogeny[C]//Proceedings of the International Conference on the Use of Atomic Energy for Peaceful Purposes. Geneva:United Nations Office at Geneva, 1956:108-144.
[42] Derriks J J, Oosterbosch R. The Swambo and Kalongwe Deposits Compared to Shinkolobwe:Contribution to the Study of Katanga Uranium[C]//International Conference on the Peaceful Uses of Atomic Energy. Geneva:United Nations Office at Geneva, 1958:663-695.
[43] Decrée S, Deloule E, De Putter T, et al. SIMS U-Pb Dating of Uranium Mineralization in the Katanga Copperbelt:Constraints for the Geodynamic Context[J]. Ore Geology Reviews, 2011, 40(1):81-89.
[44] Richards J P, Cumming G L, Krstic D, et al. Pb Isotope Constraints on the Age of Sulfide Ore Deposition and U-Pb Age of Late Uraninite Veining at the Musoshi Stratiform Copper Deposit, Central Africa Copper Belt, Zaire[J]. Economic Geology, 1988, 83(4):724-741.
[45] Cathelineau M, Boiron M C, Holliger P, et al. Metallogenesis of the French Part of the Variscan Orogen. Part II:Time-Space Relationships Between U, Au and Sn-W Ore Deposition and Geodynamic Events-Mineralogical and U-Pb Data[J]. Tectonophysics, 1990, 177(1):59-79.
[46] Turlin F, Eglinger A, Van Derhaeghe O, et al. Synmetamorphic Cu Remobilization During the Pan-African Orogeny:Microstructural, Petrological and Geochronological Data on the Kyanite-Micaschists Hosting the Cu(-U) Lumwana Deposit in the Western Zambian Copperbelt of the Lufilian Belt[J]. Ore Geology Reviews, 2016, 75(1):52-75.
[47] Decrée S, Deloule E, Putter T D, et al. Dating of U-Rich Heterogenite:New Insights into U Deposit Genesis and U Cycling in the Katanga Copperbelt[J]. Precambrian Research, 2014, 241(1):17-28.
[48] Kampunzu A B, Cailteux J. Tectonic Evolution of the Lufilian Arc (Central Africa Copper Belt) During the Neoproterozoic Pan-African Orogenesis[J]. Precambrian Research, 1999, 1(1):149.
[49] Sweeney M A, Binda P L. Some Constraints on the Formation of the Zambian Copperbelt Deposits[J]. Journal of African Earth Sciences, 1994, 19(4):303-313.
[50] Schandelmeier H. The Precambrian of NE Zambia in Relation to the Dated Kate, Mambwe and Luchewe Intrusives[J]. Geologische Rundschau, 1981, 70(3):956-971.
[51] De Waele B, Liégeois J P, Nemchin A A, et al. Isotopic and Geochemical Evidence of Proterozoic Episodic Crustal Reworking Within the Irumide Belt of South-Central Africa, the Southern Metacratonic Boundary of an Archaean Bangweulu Craton[J]. Precambrian Research, 2006, 148(3/4):225-256.
[52] 孙宏伟,王杰,任军平,等.赞比亚东北部姆波洛科索盆地沉积地层特征[J].地质论评, 2019, 65(1):232-245. Sun Hongwei, Wang Jie, Ren Junping, et al. Sedimentary Stratigraphic Characteristics of the Mporokoso Basin in the North-Eastern Zambia[J]. Geological Review, 2019, 65(1):232-245.
[53] El-Desouky H, Muchez P, Boyce A, et al. Genesis of Sediment-Hosted Stratiform Copper-Cobalt Mineralizationat Luiswishi and Kamoto, Katanga Copperbelt (Democratic Republic of Congo)[J]. Mineralium Deposita, 2010, 45(8):735-763.
[54] Haest M, Schneider J, Cloquet C, et al. Pb Isotopic Constraints on the Formation of the Dikulushi Cu-Pb-Zn-Ag Mineralization, Kundelungu Plateau (Democratic Republic of Congo)[J]. Mineralium Deposita, 2010, 45(4):393-410.
[55] 任军平,王杰,刘晓阳,等.非洲中南部铜多金属矿床研究现状及找矿潜力分析[J].吉林大学学报(地球科学版), 2017, 47(4):1083-1103. Ren Junping, Wang Jie, Liu Xiaoyang, et al. Research Status and Prospecting Potential of Copper Polymetallic Deposits in Central-South Africa[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(4):1083-1103.
[56] Berning J, Cooke R, Heimstra S A, et al.The Rossing Uranium Deposit, South West Africa[J].Economic Geology, 1976, 71:351-368.
[57] Nex P, Herd D, Kinnaird J. Fluid Extraction from Quartz in Sheeted Leucogranite as a Monitor to Styles of Uranium Mineralization:An Example from the Rossing Area, Namibia[J]. Geochemistry:Exploration, Environment, Analysis, 2002, 2(1):83-96.
[58] 陈金勇,范洪海,陈东欢,等.纳米比亚欢乐谷地区白岗岩型铀矿矿石结构构造及其成因意义[J].矿物岩石地球化学通报, 2014, 33(1):91-97. Chen Jinyong, Fan Honghai, Chen Donghuan, et al. Texture and Structure of Ore and Genesis of the Alaskite-Type Uranium Deposit in the Gaudeanmus Area, Namibia[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1):91-97.
[59] 宁福俊,王杰,任军平,等.纳米比亚达马拉构造带演化和成矿研究综述[J].地质调查与研究, 2018, 41(2):113-120. Ning Fujun, Wang Jie, Ren Junping, et al. A Preliminary Study on the Geodynamic Evolution and Mineralization in Damara Belt, Namibia[J]. Geological Survey and Research, 2018, 41(2):113-120.
[60] Nex P A M, Kinnaird J A, Oliver G J H. Petrology, Geochemistry and Uranium Mineralization of Post Collisional Magmatism Around Goanikontes, Southern Central Zone, Namibia[J]. Journal of African Earth Sciences, 2001, 33(3/4):481-502.
[61] 陈金勇,范洪海,王生云,等.纳米比亚欢乐谷地区白岗岩型铀矿成矿机理剖析[J].高校地质学报, 2016, 23(2):202-212. Chen Jinyong, Fan Honghai, Wang Shengyun, et al.Discussion on Mineralization Mechanism of Leucogranite-Type Uranium Deposit in Gaudeanmus Area,Namibia[J]. Geological Journal of China Universities, 2016, 23(2):202-212.
[62] 吴迪,庄廷新,田立,等.辽东铀成矿带黄沟铀矿床地质特征及成因探讨[J].吉林大学学报(地球科学版), 2017, 47(2):452-463. Wu Di, Zhuang Tingxin, Tian Li, et al. Geological Features and Ore Genesis of Huanggou Uranium Deposit in Eastern Liaoning Uranium Metallogenic Belt[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2):452-463.
[63] 李延河,段超,赵悦,等.氧化还原障在热液铀矿成矿中的作用[J].地质学报, 2016, 90(2):201-218. Li Yanhe, Duan Chao, Zhao Yue, et al. The Role of Oxidizing Reducing Barrier in Mineralization of Hydrothermal Uranium Ore[J]. Acta Geologica Sinica, 2016, 90(2):201-218.
[64] 张万良.华南红盆与铀矿保存[J].矿产与地质, 2007, 21(2):118-121. Zhang Wanliang. Red Basin in South China and Uranium Ore Conservation[J]. Mineral Resources and Geology, 2007, 21(2):118-121.
[1] 于洋, 王祝文, 宁琴琴, 徐方慧. 松辽盆地大庆长垣四方台组可地浸砂岩铀成矿测井评价[J]. 吉林大学学报(地球科学版), 2020, 50(3): 929-940.
[2] 林松, 王薇, 邓小虎, 查雁鸿, 周红伟, 程邈. 三峡库区典型滑坡地质与地球物理电性特征[J]. 吉林大学学报(地球科学版), 2020, 50(1): 273-284.
[3] 李洪英, 杨磊, 陈剑锋. 湖南桃江县木瓜园钨矿床地质特征及含矿岩体成岩时代[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1285-1300.
[4] 杨细浩, 胡文洁, 钟起泓, 朱昌杰, 万欢, 胡正华. 江西东坪石英脉型黑钨矿矿床地质特征、控矿因素及找矿标志[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1301-1316.
[5] 阎鸿铨. 斯特列利措夫矿田一个大型-超大型铀矿床群在苏联时期是怎样被发现和被勘探的[J]. 吉林大学学报(地球科学版), 2019, 49(4): 909-923.
[6] 付焱鑫, 谭思哲, 侯凯文. 南黄海盆地北凹泰州组烃源岩形成条件及资源潜力分析[J]. 吉林大学学报(地球科学版), 2019, 49(1): 230-239.
[7] 孙宏伟, 唐文龙, 刘晓阳, 任军平, 许康康, 吴兴源, 贺福清. 非洲东南部造山型金矿成矿环境与资源潜力分析[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1654-1668.
[8] 明添学, 唐忠, 李永平, 罗建宏, 李蓉, 薛戈, 陈雷. 云南巧家东坪铅锌矿床原生晕特征与找矿潜力[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1394-1404.
[9] 戴加祺, 黎广荣, 郭福生, 王超, 王哲, 张万良, 于玉帅. 江西相山铀矿田含铀碎斑熔岩中电气石化学成分及硼同位素组成特征[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1378-1393.
[10] 王运, 胡宝群, 王倩, 李佑国, 孙占学, 郭国林. 邹家山铀矿床伴生重稀土元素的赋存特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 719-735.
[11] 唐文龙, 孙宏伟, 刘晓阳, 王杰, 左立波, 吴兴源. 中南部非洲镍矿成矿规律及资源潜力分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 53-69.
[12] 陈斐然, 张颖, 徐祖新, 谭程, 周肖肖. 全球前寒武—寒武系含油气盆地石油地质特征及成藏主控因素[J]. 吉林大学学报(地球科学版), 2017, 47(4): 974-989.
[13] 吴迪, 庄廷新, 田立, 刘晓东, 李伟民. 辽东铀成矿带黄沟铀矿床地质特征及成因探讨[J]. 吉林大学学报(地球科学版), 2017, 47(2): 452-463.
[14] 张延军, 余海, 李建明, 于子望, 张佳宁. 深部水热型地热潜力区的GIS预测模型——以土耳其西安纳托利亚地区为例[J]. 吉林大学学报(地球科学版), 2016, 46(3): 855-864.
[15] 曾令高, 张均, 孙腾, 李斌, 朱光辉, 贾子超, 方权, 陈庚户. 峨眉山大火成岩省烂纸厂铁矿床地质特征、成因及其找矿勘查启示[J]. 吉林大学学报(地球科学版), 2016, 46(2): 412-424.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!