吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1231-1242.doi: 10.13278/j.cnki.jjuese.20200112

• 地球探测与信息技术 • 上一篇    下一篇

基于Shearlet变换的尺度方向自适应阈值地震数据随机噪声压制方法

陈毅军, 程浩, 巩恩普, 薛林   

  1. 深部金属矿山安全开采教育部重点实验室(东北大学), 沈阳 110819
  • 收稿日期:2020-05-04 出版日期:2021-07-26 发布日期:2021-08-02
  • 作者简介:陈毅军(1997-),男,硕士研究生,主要从事地震数据综合处理及其方法的学习与研究,E-mail:872997349@qq.com
  • 基金资助:
    国家自然科学基金项目(41804103);国家重点研发计划项目(2017YFC1503101)

Random Noise Suppression of Seismic Data with Scale-Oriented Adaptive Threshold Based on Shearlet Transform

Chen Yijun, Cheng Hao, Gong Enpu, Xue Lin   

  1. Key Laboratory of Safe Mining of Deep Metal Mines(Northeastern University), Ministry of Education, Shenyang 110819, China
  • Received:2020-05-04 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Natural Science Foundation of China (41804103) and the National Key R&D Program of China (2017YFC1503101)

摘要: 地震勘探的有效信号常受到随机噪声的干扰而难以识别,需要进行随机噪声和有效信号的分离。传统Shearlet全局阈值不随方向与尺度变化,在去噪的同时也会损失许多有效信号。Shearlet变换作为一种新的多尺度多方向时频分析方法,具有最优的稀疏表示能力、局部化特征和方向敏感性。本文将含噪地震信号通过Shearlet分解后计算各尺度与方向上Shearlet域系数的L2范数,并对其进行数据重排后发现,随着方向改变L2范数不断减小,进而提出一种基于L2范数的尺度方向自适应阈值计算方法。将其与小波变换、曲波变换、Shearlet全局阈值去噪方法对比,模拟数据与实际地震记录去噪结果表明,本文方法在去除随机噪声的同时,深部弱信号也得到了很好的恢复,地震数据的信噪比比其他3种方法有所提高,在0.929 9 dB条件下提升至11.565 1 dB。

关键词: Shearlet, 地震数据, 阈值改进, 信噪比

Abstract: The effective signal of seismic prospecting is often interfered by random noise, which is difficult to identify. It is necessary to separate the random noise from the effective signal. The traditional Shearlet global threshold does not change with the direction and scale, which leads to the loss of many effective signals during denoising. As a new multi-scale and multi-directional time-frequency analysis method, Shearlet transform has the best sparse representation ability, local feature, and direction sensitivity. In this paper, the noisy seismic signal is decomposed by Shearlet to calculate the L2 norm of Shearlet domain coefficients in various scales and directions. After rearranging the data, it is found that the L2 norm decreases as the direction changes. Based on the L2 norm, a calculation method of adaptive threshold value of the scale direction of the number is proposed. Compared with wavelet transform, curvelet transform, and Shearlet global threshold denoising methods, the denoising results of simulated data and actual seismic records show that the method in this paper can remove the random noise and can also recover the weak deep signals well, and the signal noise ratio of the data is improved from 0.929 9 dB to 11.565 1 dB.

Key words: Shearle, seismic data, threshold improvement, signal noise ratio

中图分类号: 

  • P631.4
[1] 刘阳,赵虎,尹成,等. 起伏地表条件下的弹性波叠前逆时偏移[J]. 煤田地质与勘探,2019,47(1):181-186. Liu Yang, Zhao Hu, Yin Cheng, et al. Elastic Wave Prestack Reverse Time Migration on Undulating Surface[J]. Coal Geology & Exploration, 2019, 47(1):181-186.
[2] 张军华. 地震资料去噪方法:原理、算法、编程及应用[M]. 青岛:石油大学出版社,2011. Zhang Junhua. Seismic Data Denoising Method:Principle Algorithm Programming and Application[M]. Qingdao:China University of Petroleum Press, 2011.
[3] 万光南.f-k滤波在压制面波噪声中的应用[J]. 中州煤炭,2014(2):99-101. Wan Guangnan. Application off-k Filtering in Noise Suppression of Surface Wave[J]. Zhongzhou Coal, 2014(2):99-101.
[4] 贾春梅,姜国庆,刘志成,等. 频域稀疏双曲Radon变换去噪方法[J]. 物探与化探,2016,40(3):527-533. Jia Chunmei, Jiang Guoqing, Liu Zhicheng, et al. Denoising Method Based on Sparse Hyperbolic Radon Transform in the Frequency Domain[J]. Geophysical and Geochemical Exploration, 2016, 40(3):527-533.
[5] 曹善舒,李月,吴宁. 自适应径向道TFPF压制地震记录随机噪声[J]. 吉林大学学报(信息科学版),2016,34(2):10-17. Cao Shanshu,Li Yue,Wu Ning. Self-Adaptive Radial-Trace TFPF for Seismic Random Noise Attenuation[J]. Journal of Jilin University (Information Science Edition), 2016, 34(2):10-17.
[6] 张洁,李月. 平行径向道时频峰值滤波消减地震资料的随机噪声[J]. 吉林大学学报(工学版),2014,44(3):882-887. Zhang Jie, Li Yue. Reduction of Random Noise in Seismic Data by Parallel Radial-Trace Time-Frequency Peek Filtering[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(3):882-887.
[7] Li J, Meng K, Yuan L, et al. Adaptive Linear TFPF for Seismic Random Noise Attenuation[J]. Journal of Petroleum Exploration & Production Technology, 2018, 8(4):1-11.
[8] Zhuang G, Yue L, Liu Y, et al. Varying-Window-Length TFPF in High-Resolution Radon Domain for Seismic Random Noise Attenuation[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 12(2):404-408.
[9] 刘霞,黄阳,黄敬,等. 基于经验模态分解(EMD)的小波熵阈值地震信号去噪[J]. 吉林大学学报(地球科学版), 2016, 46(1):262-269. Liu Xia, Huang Yang, Huang Jing, et al. Wavelet Entropy Threshold Seismic Signal Denoising Based on Empirical Mode Decomposition (EMD)[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(1):262-269.
[10] 杨凯,刘伟. 基于改进EMD的地震信号去噪[J]. 西南石油大学学报,2012,34(4):75-82. Yang Kai, Liu Wei. Random Noise Attenuation of Seismic Signal Based on Improved EMD[J]. Journal of Southwest Petroleum University, 2012, 34(4):75-82.
[11] 孙哲,王建锋,王静,等. 基于时空变中值滤波的随机噪声压制方法[J]. 石油地球物理勘探,2016,51(6):1094-1102. Sun Zhe, Wang Jianfeng, Wang Jing, et al. Random Noise Elimination Based on the Time-Spacevariant Median Filtering[J]. Oil Geophysical Prospecting, 2016, 51(6):1094-1102.
[12] 王伟,高静怀,陈文超,等. 基于结构自适应中值滤波器的随机噪声衰减方法[J]. 地球物理学报,2012, 55(5):1732-1741. Wang Wei, Gao Jinghuai, Chen Wenchao, et al. Random Seismic Noise Suppression via Structure-Adaptive Median Filter[J]. Chinese Journal of Geophysics, 2012, 55(5):1732-1741.
[13] Kourouniotis F P, Kubichek R F, Boyd N G, et al. Application of the Wavelet Transform in Seismic Data Processing for the Development of New Noise Reduction Techniques[J]. Proc.SPIE-Wavelet Applications in Signal and Image Processing IV, 1996, 2825:620-631.
[14] Donoho D L. Wedgelets:Nearly Minimax Estimation of Edges[J]. Annals of Statistics, 1999, 27(3):859-897.
[15] Pennec E L, Mallat S. Sparse Geometric Image Representations with Bandelets[J]. IEEE Transactions on Image Processing, 2005, 14(4):423-438.
[16] Do M N, Vetterli M. The Finite Ridgelet Transform for Image Representation[J]. IEEE Transactions on Image Processing, 2003, 12(1):16-28.
[17] Starck J L, Candes E J, Donoho D L. The Curvelet Transform for Image Denoising[J]. IEEE Transactions on Image Processing, 2002, 11(6):670-684.
[18] 张华,陈小宏,李红星,等. 曲波变换三维地震数据去噪技术[J]. 石油地球物理勘探,2017,52(2):226-232. Zhang Hua, Chen Xiaohong, Li Hongxing, et al. 3D Seismic Data De-Noising Approach Based on Curve-Let Transform[J]. Oil Geophysical Prospecting, 2017, 52(2):226-232.
[19] Do M N, Vetterli M. The Contourlet Transform:An Efficient Directional Multiresolution Image Representation[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2005, 14(12):2091-2106.
[20] 王建花,王守东,刘燕峰. 基于Contourlet系数相关性的地震噪声压制方法[J]. 中国海上油气,2016,28(1):39-44. Wang Jianhua, Wang Shoudong, Liu Yanfeng. Seismic Noise Suppression Method Based on Correlation of Contourlet Coefficients[J]. China Offshore Oil and Gas, 2016, 28(1):39-44.
[21] Easley G, Labate D, Lim W Q. Sparse Directional Image Representations Using the Discrete Shearlet Transform[J]. Applied & Computational Harmonic Analysis, 2008, 25(1):25-46.
[22] Guo K, Labate D, Lim W Q, et al. Wavelets with Composite Dilations and Their MRA Properties[J]. Applied & Computational Harmonic Analysis, 2006, 20(2):202-236.
[23] Labate D, Guo K. Optimally Sparse Multidimensional Representation Using Shearlets[J]. SIAM Journal on Mathematical Analysis, 2007, 39(1):298-318.
[24] Kong D, Peng Z. Seismic Random Noise Attenuation Using Shearlet and Total Generalized Variation[J]. Journal of Geophysics & Engineering, 2015, 12(6):1024-1035.
[25] Hosseini S A, Javaherian A, Hassani H, et al. Adaptive Attenuation of Aliased Ground Roll Using the Shearlet Transform[J]. Journal of Applied Geophysics, 2015, 112:190-205.
[26] 董新桐,马海涛,李月. 丘陵地带地震资料随机噪声压制新技术:高阶加权阈值函数的Shearlet变换[J]. 地球物理学报,2019,62(10):4039-4046. Dong Xintong, Ma Haitao, Li Yue. The New Technology for Suppression of Hilly Land Seismic Random Noise:Shearlet Transform and the High Order Weighted Threshold Function[J]. Chinese Journal of Geophysics, 2019, 62(10):4039-4046.
[27] 李民,周亚同,李梦瑶,等. Shearlet域基于非局部均值的地震信号去噪[J/OL]. 重庆大学学报.[2016-12-30]. http://kns.cnki.net/kcms/detail/50.1044.n.20191227.1804.011.html. Li Min, Zhou Yatong, Li Mengyao, et al. Denoising of Seismic Signals Based on Non-Local Mean in Shearlet Domain[J/OL]. Journal of Chongqing University.[2016-12-30].http://kns.cnki.net/kcms/detail/50.1044.n.20191227.1804.011.html.
[28] 李娟,计硕,李月,等. 基于Shearlet变换和峰度特性的井中微地震初至波拾取[J]. 吉林大学学报(工学版),2019,49(1):290-295. Li Juan, Ji Shuo, Li Yue, et al. First Arrival Pickup of Downhole Microseismic Signal Based on Shearlet Transform and Kurtosis Characteristic[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(1):290-295.
[29] 刘成明,王德利,胡斌,等. Shearlet域稀疏约束地震数据重建[J]. 吉林大学学报(地球科学版),2016,46(6):1855-1864. Liu Chengming, Wang Deli, Hu Bin, et al. Seismic Data Interpolation Based on Sparse Constraint in Shearlet Domain[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(6):1855-1864.
[30] 郑升,李月,董新桐. Shearlet域深度残差CNN用于沙漠地震信号去噪[J]. 吉林大学学报(信息科学版), 2019,37(1):1-7. Zheng Sheng, Li Yue, Dong Xintong. Shearlet Domain Deep Residual CNN for Removing Noise from Desert Seismic Signals[J]. Journal of Jilin University (Information Science Edition), 2019, 37(1):1-7.
[1] 刘一, 刘财, 刘洋, 勾福岩, 李炳秀. 复杂地震波场的自适应流预测插值方法[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1260-1267.
[2] 王宪楠, 刘四新, 程浩. Shearlet变换在GPR数据随机噪声压制中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1855-1864.
[3] 刘海燕, 刘财, 王典, 刘洋. 基于Facet模型梯度算子一致性的地震数据不连续性识别方法[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1286-1294.
[4] 习建军, 曾昭发, 黄玲, 崔丹丹, 王者江. 阵列式探地雷达信号极化场特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 633-644.
[5] 刘成明, 王德利, 胡斌, 王通. Shearlet域稀疏约束地震数据重建[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1855-1864.
[6] 刘霞, 黄阳, 黄敬, 段志伟. 基于经验模态分解(EMD)的小波熵阈值地震信号去噪[J]. 吉林大学学报(地球科学版), 2016, 46(1): 262-269.
[7] 贾海青, 姜弢, 徐学纯, 葛利华, 林君, 杨志超. 可控震源记录中的脉冲噪声分析[J]. 吉林大学学报(地球科学版), 2015, 45(1): 302-311.
[8] 刘财, 崔芳姿, 刘洋, 王典, 刘殿秘, 张鹏. 基于低信噪比条件下新型Seislet变换的阈值去噪方法[J]. 吉林大学学报(地球科学版), 2015, 45(1): 293-301.
[9] 徐明华,李瑞,路交通,蒙杉,龚幸林. 基于压缩感知理论的缺失地震数据重构方法[J]. 吉林大学学报(地球科学版), 2013, 43(1): 282-290.
[10] 董烈乾, 李振春, 刘磊, 李志娜, 桑运云. 基于经验模态分解的曲波阈值去噪方法[J]. J4, 2012, 42(3): 838-844.
[11] 李海山, 吴国忱, 印兴耀. 形态分量分析在去除地震资料随机噪声中的应用[J]. J4, 2012, 42(2): 554-561.
[12] 刘财, 冯智慧, 谢金娥, 冯晅, 王典. 基于四阶累积量的同相轴自动拾取方法[J]. J4, 2010, 40(5): 1188-1193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李昭阳,汤 洁,孙平安,林年丰. 松嫩平原西南部土地利用动态变化的分形研究[J]. J4, 2006, 36(02): 250 -0258 .
[2] 柳雁玲,佴 磊,刘永平. 和龙沿江公路傍山隧道偏压特征分析[J]. J4, 2006, 36(02): 240 -0244 .
[3] 崔 健,林年丰,汤 洁,姜玲玲,蔡 宇. 霍林河流域下游地区土地利用变化动态及趋势预测[J]. J4, 2006, 36(02): 259 -0264 .
[4] 张凤君,李 卿,马玖彤,于广菊. 膜蒸馏处理糠醛废水的实验研究[J]. J4, 2006, 36(02): 270 -0273 .
[5] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[6] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[7] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[8] 景建恩,魏文博,梅忠武. 塔河油田奥陶系岩溶洞穴发育特征及其与油气的关系[J]. J4, 2005, 35(05): 622 -625 .
[9] 张凤旭,孟令顺,张凤琴,杨 恕,赵承民. 重力位余弦变换谱基本特征[J]. J4, 2006, 36(02): 274 -0278 .
[10] 邢学文,胡光道. 模糊逻辑法在秦岭-松潘成矿区金矿潜力预测中的应用[J]. J4, 2006, 36(02): 298 -0304 .