吉林大学学报(地球科学版) ›› 2022, Vol. 52 ›› Issue (5): 1512-1524.doi: 10.13278/j.cnki.jjuese.20220108

• 地质与资源 • 上一篇    下一篇

青海东昆仑哈陇休玛钼多金属矿床成矿流体特征及成矿模式

许庆林1,孙丰月2,李碧乐2,杨延乾3,4    

  1. 1.山东科技大学地球科学与工程学院,山东 青岛 266590 

    2.吉林大学地球科学学院,长春 130061 

    3.青海省地质调查局,西宁 810001  4.自然资源部高原荒漠区战略性矿产勘查开发技术创新中心,西宁 810001

  • 出版日期:2022-09-15 发布日期:2022-10-07

Characteristics of Ore-Forming Fluids and Metallogenic Model of the Halongxiuma Molybdenum Polymetallic Deposit in East Kunlun, Qinghai Province

Xu Qinglin 1, Sun Fengyue2, Li Bile2, Yang Yanqian3,4   

  1. 1. College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China 

    2. College of Earth Sciences, Jilin University, Changchun 130061, China 

    3. Qinghai Geological Survey, Xining 810001, China  4.Technology Innovation Center for Exploration and Exploitation of Strategic Mineral Resources in Plateau Desert Region, Ministry of Natural Resources, Xining 810001, China

  • Online:2022-09-15 Published:2022-10-07

摘要:

哈陇休玛钼多金属矿床是东昆仑成矿带东段目前仅有的中型斑岩型矿床。为了查明其成矿流体性质及成矿物质来源,构建矿床成矿模式,本文进行了详细的流体包裹体和H-O-S同位素研究。流体包裹体显微测温显示,哈陇休玛矿床发育气液两相和含CO2三相两种类型包裹体,成矿流体呈现中高温(集中于280~340 ℃)、高盐度(w(NaCl),集中于6.00%~18.00%)和中等密度(集中于0.64~0.92 g/cm3)特点,成矿深度为2.4~4.1 km,形成于中浅成环境。H-O同位素显示,成矿流体具有岩浆水和大气降水混合的特征,但主体以岩浆水为主;S同位素显示,成矿物质主要来自于深部岩浆。结合区域构造演化认为,哈陇休玛矿床成矿模式为印支晚期东昆仑地区发生强烈壳幔混合作用,形成富含成矿元素的混合岩浆,含矿流体在随混合岩浆上升的过程中发生流体沸腾,并与大气降水混合冷却,导致成矿物理化学条件发生变化,促使成矿物质沉淀成矿。

关键词: 成矿流体, H-O-S同位素, 成矿模式, 哈陇休玛钼多金属矿床

Abstract:

Halongxiuma molybdenum polymetallic deposit is the only medium-sized porphyry deposit in the eastern part of the East Kunlun metallogenic belt. Based on the detailed study of fluid inclusions and H-O-S isotopes, this paper finds out the nature of ore-forming fluids and the source of ore-forming materials, and constructs the metallogenic model of this deposit. Petrography and microthermometry of fluid inclusions show that two types of inclusions, namely gas-liquid two-phase and CO2 containing three-phase, are developed in Halongxiuma deposit. The ore-forming fluids are characterized by medium to high temperature (concentrated in 280-340 ℃), high salinity (concentrated in 6.00%-18.00%) and medium density (concentrated in 0.64-0.92 g/cm3), and the metallogenic depth is 2.4-4.1 km, suggesting that the deposit was formed in a meso-epithermal environment. The results of H-O isotope show that the ore-forming fluids are derived from the mixing of magmatic and atmospheric water, and the main component is magmatic water; The results of S isotope show that the ore-forming materials mainly come from the deep magma. Combined with the regional tectonic evolution, it is considered that the metallogenic model of Halongxiuma deposit is as follows: Firstly, intense crust-mantle mixing occurred in East Kunlun area during the Late Indosinian, producing a mixed magma rich in ore-forming elements; Then the ore-bearing fluids boiled during the ascent of the mixed magma and cooled down due to the addition of [JP2]atmospheric water, resulting in the changes in the physical and chemical conditions of mineralization, and promoting the precipitation of metallogenic materials.

Key words: ore-forming fluid;H-O-S isotope;metallogenic model;Halongxiuma , molybdenum polymetallic deposit

中图分类号: 

  • P618.4
[1] 辛 未, 孟元库, 许志河, 孙丰月, 钱 烨. 哀牢山成矿带长安金矿床成因:地质特征、流体包裹体测温和H-O-S-Pb同位素制约[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1610-1625.
[2] 孙永刚, 李碧乐, 孙丰月, 董峻麟, 钱烨, 姚振. 青海省巴斯湖铅锌矿床M9矿体成因探讨——流体包裹体和H-O-S同位素约束[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1373-1386.
[3] 智云宝, 孙海瑞, 李风华. 山东栖霞笏山金矿床成因——元素地球化学与流体包裹体证据[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1552-1569.
[4] 刘忠, 陈海锋, 张怀东, 王波华. 安徽金寨沙坪沟整装勘查区铅锌矿“三位一体”成矿特征及找矿预测[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1539-1551.
[5] 董志国, 张连昌, 董飞羽, 张帮禄, 谢月桥, 查斌, 彭自栋, 王长乐. 西昆仑穆呼锰矿床地质特征、控矿因素及成矿模式[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1358-1372.
[6] 张连昌, 张帮禄, 董志国, 谢月桥, 李文君, 彭自栋, 朱明田, 王长乐. 西昆仑玛尔坎苏石炭纪大型锰矿带构造背景与成矿条件[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1340-1357.
[7] 孙丰月, 王睿, 王一存, 李顺达, 王可勇, 石开拓, 孙清飞, 王文元. 内蒙古碾子沟钼矿床成矿流体来源、演化及成矿机理[J]. 吉林大学学报(地球科学版), 2020, 50(3): 768-780.
[8] 吴永涛, 韩润生. 滇东北矿集区茂租铅锌矿床地球化学特征[J]. 吉林大学学报(地球科学版), 2019, 49(2): 400-413.
[9] 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071-1084.
[10] 贺晓龙, 张达, 陈国华, 狄永军, 霍海龙, 李宁, 张志辉, 饶建锋, 魏锦, 欧阳永棚. 江西朱溪铜钨矿床成因:来自矿物学和年代学的启示[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1050-1070.
[11] 张艳, 韩润生, 魏平堂, 邱文龙. 云南会泽矿山厂铅锌矿床流体包裹体特征及成矿物理化学条件[J]. 吉林大学学报(地球科学版), 2017, 47(3): 719-733.
[12] 张锦让, 温汉捷, 邹志超. 滇西北兰坪盆地金满脉状铜矿床成矿流体特征及其成矿意义[J]. 吉林大学学报(地球科学版), 2017, 47(3): 706-718.
[13] 吴迪, 庄廷新, 田立, 刘晓东, 李伟民. 辽东铀成矿带黄沟铀矿床地质特征及成因探讨[J]. 吉林大学学报(地球科学版), 2017, 47(2): 452-463.
[14] 王力, 孙丽伟. 山东省寺庄金矿床成矿流体特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1697-1710.
[15] 贾福聚, 燕永锋, 伍伟, 刘晓玮. 云南老君山锡多金属成矿区硫、铅、氢、氧同位素地球化学[J]. 吉林大学学报(地球科学版), 2016, 46(1): 105-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!