遥感图像,语义分割,聚类算法,卷积神经网络,自注意力
," />
遥感图像,语义分割,聚类算法,卷积神经网络,自注意力
,"/>
吉林大学学报(地球科学版) ›› 2024, Vol. 54 ›› Issue (5): 1764-1772.doi: 10.13278/j.cnki.jjuese.20230155
• 地球探测与信息技术 • 上一篇
王威,熊艺舟,王新
Wang Wei, Xiong Yizhou, Wang Xin
摘要:
深度学习分割方法是遥感图像分割领域的热点之一,主流的深度学习方法有卷积神经网络、transformer神经网络及两者的结合。特征提取是图像分割的重要环节,除了用卷积等方式提取特征,最近的研究聚焦于一些新的特征提取范式,如图卷积、小波变换等。本文利用聚类算法的区域构建属性,将改进的聚类算法用于骨干特征提取模块,同时使用卷积和视觉transformer作为辅助模块,以获取更丰富的特征表述;在模块基础上,提出了一种新型层次化遥感图像语义分割网络(NHNet);评估了NHNet语义分割的性能,并在LoveDA遥感数据集上与其他方法进行比较。结果表明,基于多特征提取的NHNet获得了竞争性的性能表现,平均交并比为49.64%,F1分数为65.7%。同时,消融实验证明辅助模块提高了聚类算法分割的精确性,给NHNet分别提升了1.03%和2.41%的平均交并比。
中图分类号:
[1] | 高康哲, 王凤艳, 刘子维, 王明常. 基于改进U-Net的遥感图像语义分割[J]. 吉林大学学报(地球科学版), 2024, 54(5): 1752-1763. |
[2] | 林雨准, 刘智, 王淑香, 芮杰, 金飞. 基于卷积神经网络的光学遥感影像道路提取方法研究进展[J]. 吉林大学学报(地球科学版), 2024, 54(3): 1068-1080. |
[3] | 刘 霞, 孙英杰. 基于融合残差注意力机制的卷积神经网络地震信号去噪[J]. 吉林大学学报(地球科学版), 2023, 53(2): 609-. |
[4] | 张岩, 刘小秋, 李杰, 董宏丽, . 基于时频联合深度学习的地震数据重建[J]. 吉林大学学报(地球科学版), 2023, 53(1): 283-296. |
[5] | 董旭日, 冯晅, 刘财, 田有, 李静, 王天琪, 王鑫, 衣文索. 基于DAS信号和CNN分类算法的人员运动轨迹监测方法[J]. 吉林大学学报(地球科学版), 2022, 52(3): 1004-1015. |
[6] | 李邦, 蒋川东, 王远, 田宝凤, 段清明, 尚新磊, . 基于卷积神经网络的地下水磁共振数据随机噪声压制方法 [J]. 吉林大学学报(地球科学版), 2022, 52(3): 775-784. |
[7] | 李忠潭, 薛林福, 冉祥金, 李永胜, 董国强, 李玉博, 戴均豪. 基于卷积神经网络的智能找矿预测方法:以甘肃龙首山地区铜矿为例[J]. 吉林大学学报(地球科学版), 2022, 52(2): 418-433. |
[8] | 王民水, 孔祥明, 陈学业, 杨国东, 王明常, 张海明. 基于随机补片和DeepLabV3+的建筑物遥感图像变化检测[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1932-1938. |
[9] | 熊越晗, 刘东燕, 刘东升, 王艳磊, 唐小山. 基于岩样细观图像深度学习的岩性自动分类方法[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1597-1604. |
|