Sichuan basin,deep dolomite,dolomite cement,pore,Longwangmiao Formation ,"/> <p class="MsoNormal"> 白云石胶结物特征及其对深层白云岩孔隙的作用

吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (2): 401-416.doi: 10.13278/j.cnki.jjuese.20230204

• 地质与资源 • 上一篇    下一篇

白云石胶结物特征及其对深层白云岩孔隙的作用

屈海洲1,陈润1,徐伟 2,张云峰1,张亚,何溥为2,唐松3,李文皓4   

  1. 1.西南石油大学地球科学与技术学院, 成都610500

    2.中国石油西南油气田分公司勘探开发研究院, 成都610051

    3.中国石油西南油气田分公司川中油气矿, 四川遂宁629000

    4.中国石油西南油气田分公司勘探事业部, 成都610051

  • 出版日期:2025-03-26 发布日期:2025-05-09
  • 基金资助:

    国家自然科学基金项目(41702163);中国石油-西南石油大学创新联合体科技合作项目(2020CX010301


Characteristics of Dolomite Cement and Its Effect on the Porosity of Deep Dolomite

Qu Haizhou1, Chen Run1, Xu Wei2, Zhang Yunfeng1, Zhang Ya2,He Puwei2, Tang Song3, Li Wenhao4   

  1. 1. School of Geosciences & Technology, Southwest Petroleum University, Chengdu 610500, China

    2. Exploration and Development Research Institute, PetroChina Southwest Oil and Gas Field Company, Chengdu 610051, China

    3. Chuanzhong Oil and Gas Mine, PetroChina Southwest Oil and Gas Field Company, Suining 629000, Sichuan, China

    4. Exploration Division, PetroChina Southwest Oil and Gas Field Company, Chengdu 610051, China

  • Online:2025-03-26 Published:2025-05-09
  • Supported by:
    Supported by the National Natural Science Foundation of China (41702163 and the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance 2020CX010301

摘要:

深层白云岩是近年深部勘探的重点,其孔隙内多见白云石胶结,但白云石胶结物晶粒赋存组合方式及其对孔隙的作用研究较少。因此,以四川盆地高磨地区下寒武统龙王庙组为例,综合岩心、薄片、阴极发光、碳氧同位素及包裹体等资料,研究其白云石胶结物类型、特征、结构、体积分数及其对孔隙的影响。白云石胶结物晶体在形态上主要有半菱形、菱形、环带状和鞍状等,粒径包含粉晶—巨晶。胶结物晶体与孔洞形成内衬状、桥接状和镶嵌状三种结构。使用发育频率(发育某种结构的样品数/颗粒白云岩或晶粒白云岩样品总数)来表征某种结构的发育程度,白云岩中镶嵌状结构最发育(发育频率为48.3%89.5%),桥接状次之(22.4%73.7%),内衬状最弱(8.6%55.2%)。内衬状结构和桥接状结构主要发育在颗粒白云岩中,体积分数分别为015%25%50%,且其发育程度随细粉晶白云石胶结物体积分数增加而增强;镶嵌状结构在白云岩中普遍发育,体积分数主要为50%100%,且其发育与中晶巨晶白云石体积分数正相关。内衬状结构和桥接状结构主要形成于同生成岩阶段中成岩阶段,镶嵌状结构主要形成于晚成岩阶段。内衬状结构及桥接状结构形成较早可降低成岩进程中压溶压实对孔隙的破坏,而镶嵌状结构破坏残余孔隙。以主要发育镶嵌状结构层段的孔隙度为基准,主要发育内衬状结构和桥接状结构层段的孔隙度可提高约50%


关键词: 四川盆地, 深层白云岩, 白云石胶结物, 孔隙, 龙王庙组

Abstract:

Deep dolomite has been a key focus of deep exploration in recent years, with dolomite cementation commonly found in its internal pores. However, there is relatively less research on the combination of dolomite cement grain occurrence and its effect on pores. Therefore, taking the Longwangmiao Formation of the Lower Cambrian in the Gaomo area of the Sichuan basin as an example, comprehensive data such as core samples, thin sections, cathodoluminescence, carbon-oxygen isotopes, and inclusions were used to study the types, characteristics, structures, volume fraction, and their effects on pores of dolomite cement. The crystals of dolomite cement mainly have shapes such as semi rhombus, rhombus, ring shaped, saddle shaped, etc., with particle sizes ranging from powder crystals to giant crystals. Cement crystals and pores form three types of structures: lining, bridging, and embedding. Using the frequency of development (the number of samples that develop a certain structure/the total number of samples of granular dolomite or grain dolomite) to characterize the degree of development of a certain structure, the embedding structure is the most developed in dolomite (48.3%-89.5%), followed by the bridging structure (22.4%-73.7%), and the lining structure is the weakest (8.6%-55.2%). The inner lining structure and bridging structure are mainly developed in granular dolomite, with volume fraction of 0 to 15% and 25% to 50%, respectively, and their development degree increases with the volume fraction of fine-grained dolomite cement. Embedding structures are commonly developed in dolomite, with a volume fraction mainly ranging from 50% to 100%, and their development is positively correlated with the volume fraction of medium crystalline to giant crystalline dolomite. The inner lining structure and bridging structure are mainly formed during the syndiagenetic stage to the middle diagenetic stage, while the embedding structure is mainly formed during the late diagenetic stage. The formation of inner lining and bridging structures earlier can reduce the damage to pores caused by solution compaction during diagenesis, while the embedding structure can damage residual pores. Based on the porosity of the layers with mainly developed embedding structures, the porosity of the layers with mainly developed inner lining and bridging structures can be increased by 50%.



Key words: Sichuan basin')">

Sichuan basin, deep dolomite, dolomite cement, pore, Longwangmiao Formation

中图分类号: 

  • P618.13
[1] 程瑶, 陆丹丹, 赵龙飞.

微波加热油页岩储层的热响应 [J]. 吉林大学学报(地球科学版), 2025, 55(2): 387-400.

[2] 官大勇, 张宏国, 牛成民, 王启明, 李晓辉.

渤海湾盆地辽中凹陷地区东营组湖底扇关键成藏认识与勘探实践 [J]. 吉林大学学报(地球科学版), 2025, 55(2): 351-362.

[3] 原家鹏, 张云峰.

 开鲁盆地陆东凹陷白垩系九佛堂组上段米兰科维奇旋回及沉积响应特征 [J]. 吉林大学学报(地球科学版), 2025, 55(2): 375-386.

[4] 仝立华, 单玄龙, 张家强, 李锋, 石磊, 李耀华, 徐银波, 刘衍彤.

松辽盆地西部斜坡带中南部大岗地区上白垩统油砂含油性特征 [J]. 吉林大学学报(地球科学版), 2025, 55(2): 363-374.

[5] 吴兆徽, 刘显太, 杜玉山, 吴颖昊. 碳酸盐岩微观测试技术对比与应用——以济阳坳陷乐安油田潜山为例[J]. 吉林大学学报(地球科学版), 2024, 54(5): 1519-1529.
[6] 雷永昌, 邱欣卫, 吴琼玲, 朱红涛, 肖张波, 李敏.

惠陆低凸起东侧早文昌期源-汇系统分析与勘探实践 [J]. 吉林大学学报(地球科学版), 2024, 54(2): 413-428.

[7] 徐春强, 张新涛, 王晨杰, 张震, 刘丰. 渤中凹陷中生界火山岩特征及优质储层控制因素[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1027-.
[8] 王有功, 吕 超, 于爱暄, 刘世瑞. 基于正断层差异生长演化分析识别不同类型断层相关背斜圈闭——以苏北盆地高邮凹陷汉留断层为例[J]. 吉林大学学报(地球科学版), 2023, 53(2): 373-.
[9] 单玄龙, 热西提·亚力坤, 刘 培, 陶文芳, 张 琴, 郝国丽, 李克成, 姚佳利. 珠江口盆地西江主洼珠琼运动的沉积响应及构造意义[J]. 吉林大学学报(地球科学版), 2023, 53(2): 329-.
[10] 刘宗宾, 程奇, 吕坐彬, 房娜, 王双龙.

渤海海域锦州南油田太古宇变质岩潜山储层特征及其发育模式 [J]. 吉林大学学报(地球科学版), 2022, 52(3): 829-839.

[11] 易娟子, 张少敏, 蔡来星, 陈守春, 罗鑫, 于吉星, 罗妮娜, 杨田.

川东地区下侏罗统凉高山组地层-沉积充填特征与油气勘探方向 [J]. 吉林大学学报(地球科学版), 2022, 52(3): 795-815.

[12] 任宪军.

松辽盆地长岭断陷盆缘陡坡带中性火山岩相模式及其对储层的控制作用 [J]. 吉林大学学报(地球科学版), 2022, 52(3): 816-828.

Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[2] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[3] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[4] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[5] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[6] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[7] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[8] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[9] 王谦,吴志芳, 张汉泉,莫修文. 随机分形在刻划储层非均质特性中的应用[J]. J4, 2005, 35(03): 340 -0345 .
[10] 李雪平,唐辉明. 基于GIS的分组数据Logistic模型在斜坡稳定性评价中的应用[J]. J4, 2005, 35(03): 361 -0365 .