吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (5): 1728-1741.doi: 10.13278/j.cnki.jjuese.20240145

• 地球探测与信息技术 • 上一篇    下一篇

孔隙及流体介质对碎屑岩热导率的影响

杨国鑫1,庞玉茂1, 2,马瑞山3,郭兴伟2, 4,曹慧3,蔡来星5

#br#

#br#   

  1. 1.山东科技大学地球科学与工程学院,山东青岛266590

    2.崂山实验室青岛海洋科技中心,山东青岛266237

    3.中国石油青海油田分公司,甘肃敦煌736202

    4.山东大学海洋研究院,山东青岛266237

    5.成都理工大学沉积地质研究院,成都610059

  • 出版日期:2025-09-26 发布日期:2025-11-15
  • 基金资助:

    国家自然科学基金项目(42476077);山东省自然科学基金项目(ZR2023MD112)


Influence of Porosity and Fluid Medium on Thermal Conductivity of Clastic Rocks

Yang Guoxin1, Pang Yumao1, 2, Ma Ruishan 3, Guo Xingwei2, 4, Cao Hui 3, Cai Laixing5   

  1. 1. College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China

    2. Qingdao Ocean Science and Technology Center, Laoshan Laboratory, Qingdao 266237, Shandong, China

    3. PetroChina Qinghai Oilfield Branch, Dunhuang 736202, Gansu, China

    4. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, Shandong, China

    5. Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China

  • Online:2025-09-26 Published:2025-11-15
  • Supported by:
    Supported by the National Natural Science Foundation of China (42476077) and the Natural Science Foundation  of Shandong Province (ZR2023MD112)

摘要:

岩石热物性是地热学、工程地质及油气地质等研究领域的关键基础参数。为了揭示孔隙流体介质和饱和度等因素对碎屑岩热导率的影响,本研究选取柴达木盆地新生界不同类型的碎屑岩样品,运用非稳态法测量其热导率。结果显示:碎屑岩热导率随孔隙度的增加而降低,在孔隙度低于5.0%的致密储层样品中,热导率降幅最大可达37.6%;碎屑岩热导率与饱和度呈显著的正相关关系,且含水饱和度对横、纵向热导率的影响均较含油饱和度更显著;碎屑岩烘干状态下和饱和水状态下的热导率各向异性系数范围分别为0.648~1.546和0.840~1.200,说明饱和度对热导率各向异性有减弱作用;石英含量对岩石热导率的影响较大,且富石英碎屑岩脆性大,导致岩石样品中的微裂缝更为发育,而原状地层中的微裂缝通常饱和孔隙流体,推测裂缝的发育在干燥状态下对实际地层热导率及其各向异性有消极影响,但在含水条件下,流体沿微裂缝对流,会显著提高热导率。


关键词: 碎屑岩, 热导率, 孔隙度, 流体介质, 热导率各向异性, 岩石热物性

Abstract:

Rock thermal physical properties are key parameters in the fields of geothermal, engineering geology, and oil and gas geology. In order to have a clear understanding of the influence of factors such as pore fluid medium and saturation on the thermal conductivity of clastic rocks, in this study, typical clastic rock samples from the Cenozoic of  Qaidam basin were selected, and their thermal conductivities were measured by applying the unsteady state method. The thermal conductivity of clastic rocks decreases with the increase of porosity, and the decrease of thermal conductivity can be up to 37.6% in the samples of dense reservoirs with porosity lower than 5.0%. The thermal conductivity of  clastic rocks showes a significant positive correlation with the saturation degree, and the effect of water saturation on  transverse and longitudinal thermal conductivity is more significant than that of oil saturation. The ranges of thermal conductivity anisotropy coefficients of clastic rocks in dry state and in water-saturated state are 0.648-1.546 and 0.840-1.200, respectively, indicating that the saturation degree has an attenuating effect on the anisotropy of thermal conductivity. The greater effect of quartz content on the thermal conductivity of the rocks and the brittleness of the quartz-rich clastic rocks result in more developed microfractures in the rock samples, whereas microfractures in situ formation are usually saturated with pore fluids, it is hypothesized that the development of fractures negatively affects the actual stratigraphic thermal conductivity and its anisotropy in dry conditions, but under water-bearing conditions, groundwater convection along the microfractures significantly increases the thermal conductivity.

Key words: clastic rocks, thermal conductivity, porosity, fluid medium, anisotropy of thermal conductivity, rock thermal physical properties

中图分类号: 

  • P314
[1] 郑轩, 宗兆云, 付亚群, 骆坤. 海域油气盖层叠前地震反演预测方法及应用[J]. 吉林大学学报(地球科学版), 2024, 54(6): 2128-2141.
[2] 崔裔曈, 王祝文, 徐方慧, 韩锐羿, 齐兴华. 基于斯通利波及电成像测井数据对火成岩裂缝地层的特征分析[J]. 吉林大学学报(地球科学版), 2022, 52(2): 624-632.
[3] 张丽华, 王敏, 单刚义, 潘保芝, 曹玥. 不同岩性火山岩孔隙度压力敏感性及其影响因素:以长岭断陷火山岩为例[J]. 吉林大学学报(地球科学版), 2022, 52(2): 382-389.
[4] 林孟雄, 刘立, 张一果, 常森, 夏阳. 苏里格气田东二区气水分布及产水控制因素分析[J]. 吉林大学学报(地球科学版), 2020, 50(2): 627-634.
[5] 李博南, 曲寿利, 沈珲. 基于岩石物理模型的碳酸盐岩储层微观孔隙特征分析方法[J]. 吉林大学学报(地球科学版), 2020, 50(1): 285-293.
[6] 李亚龙, 于兴河, 单新, 王娇, 史新, 胡鹏. 鄂尔多斯盆地东南部山西组泥岩封盖性能评价[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1070-1082.
[7] 李振苓, 沈金松, 李曦宁, 王磊, 淡伟宁, 郭森, 朱忠民, 于仁江. 用形态学滤波从电导率图像中提取缝洞孔隙度谱[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1295-1307.
[8] 邱隆伟, 师政, 付大巍, 潘泽浩, 杨生超, 曲长胜. 临南洼陷沙三段孔隙度控制因素分析与定量模型[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1321-1331.
[9] 龚建洛,张金功,惠涛,黄传卿,张林晔,孙志刚,陈晓军. 沉积岩平行层面与垂直层面方向热导率与孔隙连通性之间的关系[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1789-1797.
[10] 马荣,石建省,刘继朝. 人工内分泌网络模型在水文地质参数研究中的应用[J]. 吉林大学学报(地球科学版), 2013, 43(3): 914-921.
[11] 李晓辉, 周彦球, 缑艳红, 王玉华, 姜宝彦. 电成像测井孔隙度分析技术及其在碳酸盐岩储层产能预测中的应用[J]. J4, 2012, 42(4): 928-934.
[12] 王军, 崔红庄, 戴俊生, 季宗镇. 接触变质带中冷凝收缩缝裂缝参数定量研究[J]. J4, 2012, 42(1): 58-65.
[13] 凌振宝, 邹得宝, 张堃, 徐民, 王君. 岩矿石孔隙度测量方法[J]. J4, 2011, 41(3): 921-924.
[14] 蒙启安, 刘立, 曲希玉, 汪成辞, 王小琴. 贝尔凹陷与塔南凹陷下白垩统铜钵庙组-南屯组油气储层特征及孔隙度控制作用[J]. J4, 2010, 40(6): 1232-1240.
[15] 王英伟, 张建民, 王满, 潘保芝, 邢艳娟, 石丹红. 基于序贯指示模拟方法的火山岩储层岩性及孔隙度模拟[J]. J4, 2010, 40(2): 455-460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!