吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (2): 627-634.doi: 10.13278/j.cnki.jjuese.20190316

• 油气勘探开发 • 上一篇    下一篇

苏里格气田东二区气水分布及产水控制因素分析

林孟雄1, 刘立2, 张一果1, 常森1, 夏阳1   

  1. 1. 长庆油田分公司第五采气厂地质研究所, 西安 710000;
    2. 自然资源部油气资源战略研究中心, 北京 100034
  • 收稿日期:2019-12-27 出版日期:2020-03-26 发布日期:2020-03-31
  • 通讯作者: 刘立(1966-),女,研究员,博士,主要从事油气资源勘查开发及管理研究,E-mail:liuli1837@126.com E-mail:liuli1837@126.com
  • 作者简介:林孟雄(1981-),男,高级工程师,主要从事气田开发管理方面的工作,E-mail:linmengxiong_ng_cq@petrochina.com.cn
  • 基金资助:
    “十三五”国家科技重大专项(2016ZX05004-006)

Analysis of Gas-Water Distribution and Water Production Control Factors in the East 2nd Area of Sulige Gas Field

Lin Mengxiong1, Liu Li2, Zhang Yiguo1, Chang Sen1, Xia Yang1   

  1. 1. Institute of Geology, No.5 Gas Production Plant, Changqing Oilfield Company, Xi'an 710000, China;
    2. Oil and Gas Resources Strategic Research Center, Ministry of Natural Resources, Beijing 100034, China
  • Received:2019-12-27 Online:2020-03-26 Published:2020-03-31
  • Supported by:
    Supported by National Science and Technology Major Project During the "13th Five-Year Plan" Period(2016ZX05004-006)

摘要: 针对低孔、低渗的致密砂岩气藏高效持续开发急需解决的气水分布及产水控制因素问题,通过苏里格气田东二区气藏地质和生产动态资料的综合分析,得出以下主要认识:地质构造和生烃强度控制本区气水分布的宏观格局,高产气井绝大多数发育在近烃源岩的低洼部位或微幅构造上;储层物性参数对气水分布起着关键的控制作用,物性好的砂体毛细管阻力小,天然气更易于驱替储集条件好的砂岩储层中的地层水形成气层,研究区气层孔隙度介于7%~14%之间,渗透率为(0.50~2.00)×10-3 μm2;泥岩隔层等因素造成气水分布的复杂化,随着下伏山1段泥岩隔层厚度的增大,对应区域盒8段日产气量减小,日产水量增加;致密砂岩气藏产能受开发方式的影响很大,在气藏合理配产过程中,需要考虑压敏及速敏效应的影响:投产时间越长、配产及生产压差越大,气井出水速率越快,出水量越大。采用水平井开发,可增加气井的泄流面积、减小生产压差、提高产能、降低水气比,可以实现延长无水或低水采气期,从而提高采收率。

关键词: 苏里格气田, 气水分布, 孔隙度, 渗透率, 控制因素, 开发方式, 采收率

Abstract: Aiming at the gas and water distribution and control factors needed for the efficient and sustainable development of low-porosity and low-permeability tight sandstone gas reservoirs, a comprehensive analysis of gas reservoir geological and production dynamic data was conducted in the East 2nd area of Sulige gas field. The results show that:1) the geological structure and the intensity of hydrocarbon generation control the macro-pattern of gas-water distribution in this area, and the gas reservoirs are developed on the low-lying part or micro-structure near the source rocks; 2) the physical parameters of reservoir play a key role in controlling the gas-water distribution; 3) the sand bodies with good physical properties have less capillary resistance, and natural gas is more likely to displace the formation water in sandstone reservoirs to form gas layers. The porosity of the gas layers in the study area is between 7% and 14%, and the permeability is between 0.50×10-3 and 2.00×10-3 μm2. The factors such as mudstone barriers complicate the gas-water distribution. The thickness increase of the mudstone barrier in the first Member of Shanxi Formation leads to the decrease of daily gas production but increase water production in the 8th Member of Shihezi Formation in the corresponding area. It is concluded that the production capacity of tight sandstone gas reservoirs is greatly affected by the development method. The pressure sensitive and velocity sensitive effects should be considered for a reasonable production allocation of gas reservoirs:the longer the production time is, the greater the production pressure difference is, the faster the gas well water production rate, and the larger the water production volume. The horizontal well development can increase the drainage area of gas wells, and it can, in turn, reduce the production pressure difference and the water-gas ratio, increase productivity, and extend the water-free or low-water gas recovery period and recovery ratio.

Key words: Sulige gas field, gas-water distribution, porosity, permeability, control factors, development method, recovery ratio

中图分类号: 

  • P618.13
[1] 付金华,范立勇,刘新社,等.苏里格气田成藏条件及勘探开发关键技术[J].石油学报,2019,40(2):240-256. Fu Jinhua, Fan Liyong, Liu Xinshe,et al Gas Accumulation Conditions and Key Exploration and Development in Technologies in the Sulige Gas Field[J]. Acta Petrolei Sinica,2019,40(2):240-256.
[2] 何自新, 付金华, 席胜利,等. 苏里格大气田成藏地质特征[J].石油学报, 2003, 24(2):6-12. He Zixin, Fu Jinhua, Xi Shengli,et al. Geological Features of Reservoir Formation of Sulige Gas Field[J]. Acta Petrolei Sinica, 2003, 24(2):6-12.
[3] Yu Z,Sun L Y,Wu X N,et al. Characteristics and Controlling Factors of the Middle Array of Ordovician Majiagou Reservoirs to the West of Jingbian Gas Gield,Ordos Basin[J].Marine Origin Petroleum Geology,2012,17(4):49-56.
[4] 费世祥,冯强汉,安志伟,等. 苏里格气田中区下石盒子组盒8段沉积相研究[J].天然气勘探与开发, 2013, 36(2):17-22. Fei Shixiang, Feng Qianghan, An Zhiwei, et al.Sedimentary Facies of Shihezi 8 Member in Middlearea, Sulige Gasfield[J]. Natural Gas Exploration and Development, 2014, 36(2):17-22.
[5] 朱志良,张万,张成功,等.苏里格气田苏59井区气水分布规律研究[J].重庆科技学院学报,2015,17(4):1-5. Zhu Zhiliang, Zhang Wan,Zhang Chenggong, et al. Study on Gas-Water Distribution Law in Su 59 Well Area of Sulige Gas Field[J].Journal of Chongqing University of Science and Technology, 2015, 17(4):1-5.
[6] 代金友,李建霆,王宝刚,等.苏里格气田西区气水分布规律及其形成机理[J].石油勘探与开发,2012, 39(5):524-529. Dai Jinyou, Li Jianting,Wang Baogang,et al. Gas and Water Distribution in the Western Area of Sulige Gas Field and Its Formation Mechanism[J]. Petroleum Exploration and Development,2012,39(5):524-529.
[7] 郭建林.苏里格气田相对高产富集储层分布规律研究[D].北京:中国地质大学(北京),2008. Guo Jianlin. Study on the Distribution of Relatively High-Yield and Enriched Reservoirs in the Sulige Gas Field[D]. Beijing:China University of Geosciences(Beijing),2008.
[8] 李进步, 付斌, 赵忠军,等. 苏里格气田致密砂岩气藏储层表征技术及其发展展望[J]. 天然气工业, 2015, 35(12):35-41. Li Jinbu, Fu Bin, Zhao Zhongjun, et al. Characterization Technology for Tight Sandstone Gasreservoirs in the Sulige Gas Field, Ordos Basin, and Its Development Prospect[J]. Natural Gas Industry, 2015, 35(12):35-41.
[9] Yang H,Han J,Sun C, et al. A Development Model and Petroleum Exploration of Karst Reservoirs of Ordovician Yingshan Formation in the Northern Slope of Tazhong Palaeouplift[J].Acta Petrolei Sinica,2011,32(2):199-205.
[10] 金文辉.低渗透砂岩气藏气水分布规律研究[D].成都:成都理工大学,2013. Jin Wenhui.Study on Gas-Water Distribution Law of Low Permeability Sandstone Gas Reservoir[D]. Chengdu:Chengdu University of Technology,2013.
[11] 管岩,田国庆,薛萧敏,等.储层非均质性对低渗透气藏富集规律的影响:以鄂尔多斯盆地苏里格气田苏X区盒8段为例[J].国外测井技术,2019,40(5):48-51. Guan Yan,Tian Guoqing,Xue Xiaomin,et al. Influence of Reservoir Heterogeneity on Enrichment Law of Low Permeability Gas Reservoirs:Taking the P2h8 of Su X Block of Sulige Gas Field in Ordos Basin as an Example[J].World Well Logging Technology,2019,40(5):48-51.
[12] 窦伟坦,刘新社,杜涛.鄂尔多斯盆地苏里格气田地层水成因及气水分布规律[J].石油学报,2010,31(5):767-773. Dou Weitan, Liu Xinshe,Du Tao. Formation of Water and Gas-Water Distribution in the Sulige Gas Field, Ordos Basin[J]. Acta Petroleum Sinica, 2010,31(5):767-773.
[13] 李仲冬.榆林子洲地区山2段地层水成因及分布规律研究[D].成都:成都理工大学,2008. Li Zhongdong. Study on the Genesis and Distribution of Stratigraphic Water in the Shan 2 Member of the Yulinzizhou Area[D]. Chengdu:Chengdu University of Technology, 2008.
[14] 金文辉,周文.苏西盒8气藏气井产水成因剖析[J].物探化探计算技术, 2012,34(6):708-712. Jin Wenhui, Zhou Wen. Analysis of the Genesis of Gas Production in Suxi Box 8 Gas Reservoir[J]. Geophysical and Geochemical Exploration Technology, 2012,34(6):708-712.
[15] Zhang Hualiang, Janson X, Liu Li, et al. Lithofacies, Diagenesis, and Reservoir Quality Evaluation of Wolfcamp Unconventional Succession in the Midland Basin,West Texas[M]. Houston Texas:AAPG Annual Convention and Exhibition, 2017.
[16] 李洪玺.榆林气田陕141井区气井生产动态特征分析[J].天然气工业, 2005, 25(12):89-91. Li Hongxi. Analysis of Dynamic Characteristics of Gas Well Production in Shaan 141 Well Area of Yulin Gas Field[J]. Natural Gas Industry, 2005, 25(12):89-91.
[17] 王蕾蕾,何顺利,代金友.苏里格气田西区产水类型研究[J].天然气勘探与开发, 2010,33(4):41-44. Wang Leilei, He Shunli, Dai Jinyou. Research on Water Production Types in the West Area of Sulige Gas Field[J]. Natural Gas Exploration and Development, 2010, 33(4):41-44.
[18] 袁恩来.大牛地气田老区山1气藏气水分布特征研究[D].成都:成都理工大学,2011. Yuan Enlai. Study on Gas-Water Distribution Characteristics of Shan 1 Gas Reservoir in the Old Area of Daniudi Gas Field[D]. Chengdu:Chengdu University of Technology,2011.
[19] 费世祥,陈兴官,靳锁宝,等.鄂尔多斯盆地苏里格气田有效砂体展布规律与开发方式研究:以苏东南区为例[J].天然气勘探与开发, 2018,41(4):55-61. Fei Shixiang,Chen Xingguan, Jin Suobao, et al. Distribution Laws and Development Modes of Effective Sandbodies in Sulige Gas Field:Examples from Southeast Sulige Block[J].Natural Gas Exploration and Development,2018,41(4):55-61.
[20] 孙恩慧,杨威,汪巍,等.底水油藏高含水期油水两相水平井产能预测[J].石油化工应用,2019,38(9):21-26. Sun Enhui,Yang Wei,Wang Wei, et al.Application Productivity Analysis Method of Oil and Water Two-Phase Horizontal Well of High Water Cut Stage in Bottom Water Reservoir[J]. Petrochemical Industry, 2019,38(9):21-26.
[21] 曹海,詹国卫,余小群,等.深层页岩气井产能的主要影响因素:以四川盆地南永川区块为例[J].天然气工业,2019,19(增刊1):118-122. Cao Hai, Zhan Guowei, Yu Xiaoqun, et al. Main Factors Affecting the Productivity of Deep Shale Gas Wells[J]. Natural Gas Industry, 2019,39(Sup.1):118-122.
[22] 彭神奇,董文玉,景琛.大牛地气田大8-大10井区水平井产能影响因素[J].中外能源,2019,24(11):51-57. Peng Shenqi,Dong Wenyu,Jing Chen. Influencing Factors of Horizontal Well Productivity in Da8-Da10 Well Block of Daniudi Gas Field[J]. Sino-Global Energy,2019,24(11):51-57.
[23] 王羲.低渗气藏分支水平井气水两相产能影响因素分析[J].钻采工艺,2019,42(3):41-43. Wang Xi. Study on Gas-Water Produtivty of Multi-Lateral Horizontal Wells in Low Permibility Gas Reservoir and Facters[J].Drilling & Production Technology,2019,42(3):41-43.
[1] 赵汉卿, 陈晓明, 李超, 吴穹螈, 王迪. 渤海湾盆地垦利L油田古近系沙三上段优质储层物性控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(2): 653-661.
[2] 李博南, 曲寿利, 沈珲. 基于岩石物理模型的碳酸盐岩储层微观孔隙特征分析方法[J]. 吉林大学学报(地球科学版), 2020, 50(1): 285-293.
[3] 杨怀宇. 王家岗—八面河地区潜山残留地层发育特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1625-1634.
[4] 瞿雪姣, 李继强, 张吉, 赵忠军, 戚志林, 罗超. 辫状河致密砂岩储层构型单元定量表征方法[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1342-1352.
[5] 陈爱民. 澳大利亚Bonaparte盆地WA-406-P区块油气成藏条件及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 965-980.
[6] 林敉若, 操应长, 葸克来, 王健, 陈洪, 吴俊军. 阜康凹陷东部斜坡带二叠系储层特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 991-1007.
[7] 孙海涛, 钟大康, 李勇, 毛亚昆, 杨宪彰. 超深低孔特低渗砂岩储层的孔隙成因及控制因素——以库车坳陷克深地区巴什基奇克组为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 693-704.
[8] 高崇龙, 纪友亮, 靳军, 王剑, 任影, 车世琦, 王茹, 桓芝俊. 准噶尔盆地莫索湾地区清水河组深层优质储层特征及其物性控制因素[J]. 吉林大学学报(地球科学版), 2017, 47(4): 990-1006.
[9] 李亚龙, 于兴河, 单新, 王娇, 史新, 胡鹏. 鄂尔多斯盆地东南部山西组泥岩封盖性能评价[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1070-1082.
[10] 李振苓, 沈金松, 李曦宁, 王磊, 淡伟宁, 郭森, 朱忠民, 于仁江. 用形态学滤波从电导率图像中提取缝洞孔隙度谱[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1295-1307.
[11] 康学远, 施小清, 史良胜, 吴吉春. 基于集合卡尔曼滤波的多相流模型参数估计——以室内二维砂箱中重质非水相污染物入渗为例[J]. 吉林大学学报(地球科学版), 2017, 47(3): 848-859.
[12] 张恒荣, 何胜林, 吴进波, 吴一雄, 梁玉楠. 一种基于Kozeny-Carmen方程改进的渗透率预测新方法[J]. 吉林大学学报(地球科学版), 2017, 47(3): 899-906.
[13] 邱隆伟, 师政, 付大巍, 潘泽浩, 杨生超, 曲长胜. 临南洼陷沙三段孔隙度控制因素分析与定量模型[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1321-1331.
[14] 刘仁强, 段永刚, 谭锋奇, 刘红现, 屈怀林. 用试井资料研究低渗透裂缝性油藏渗流模式及演化特征——以准噶尔盆地火烧山油田为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 610-616.
[15] 赵军, 代新雲, 古莉, 祁新忠, 陈伟中. 基于粒度控制的复杂储层渗透性建模方法[J]. 吉林大学学报(地球科学版), 2016, 46(1): 279-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!