吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (2): 388-397.doi: 10.13278/j.cnki.jjuese.201602108

• 地质与资源 • 上一篇    下一篇

湖相致密油资源地球化学评价技术和应用

王飞宇1,2, 冯伟平1,2, 关晶2, 贺志勇3   

  1. 1. 中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102200;
    2. 中国石油大学(北京)地球科学学院, 北京 102200;
    3. Zetaware公司, 美国德州 77479
  • 收稿日期:2015-07-27 发布日期:2016-03-26
  • 作者简介:王飞宇(1963-),男,教授,主要从事油气地质和地球化学、油气系统定量模拟研究工作,E-mail:fywang@cup.edu.cn
  • 基金资助:

    国家油气专项(2008ZX05007-001);国家自然科学基金项目(41372147)

Geochemical Assessment of Lacustrine Tight Oil and Application

Wang Feiyu1,2, Feng Weiping1,2, Guan Jing2, He Zhiyong3   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102200, China;
    2. College of Geosciences, China University of Petroleum, Beijing 102200, China;
    3. Zetaware Inc, Sugar Land, TX USA 77479
  • Received:2015-07-27 Published:2016-03-26
  • Supported by:

    Supported by National Science and Technology Major Project (2008ZX05007-001) and National Natural Science Foundation of China (41372147)

摘要:

湖相致密油或页岩油资源量和可采性评价关键问题:一是在什么地方;二是有多少;三是有多少可采出。本文讨论了解决这3个问题的关键性地质技术和理论。湖相致密油勘探层空间分布识别的关键是高有机丰度源岩层段和含油夹层精细识别。利用源岩测井地球化学评价技术可识别出湖相地层中不同w(TOC)区间的源岩层段,利用氢指数(IH)与w(TOC)的相关性,可实现湖相源岩层非均质性精细表征。湖相致密油勘探层油的赋存形式分为两类:一是致密油勘探层中砂岩、粉砂岩和碳酸盐岩夹层中的油,呈游离态;二是富有机质源岩中的油,包括了吸附态和游离态。吸附油在目前的技术条件下难以开采,现阶段真正有工业价值的是游离油。根据实际地球化学数据可标定出源岩中游离油量和吸附油量模型,从而可计算出游离油量、吸附油量和总原地油量。致密油流动性控制了其可采性,而源岩成熟度和生烃转化率是控制烃类流动性的关键。利用湖相高丰度源岩(w(TOC)>2%)IH演化可较高精度地标定源岩的成熟度和转化率。以泌阳盆地为例展示了如何从源岩生烃模型和实际岩石热解数据预测页岩油的流动性。

关键词: 致密油, 页岩油, 游离油, 吸附油, 流动性, 泌阳盆地, 地球化学

Abstract:

The three key isssues of the assessment of lacustrine tight oil or shale oil plays are:firstly, where it is (spatial distribution)? secondly, how much original oil existed in-place? and thirdly, how much oil can be produced (mobility of residual hydrocarbon). This paper discusses the geological theory and key technology to solve the forementioned three questions. The key to delineate lacustine tight oil or shale oil plays is refined as the characterization of organic-rich source rock intervals and oil sandwiche. Various source rock intervals can be identified by integrated well logging and geochemical assessment technology with SR-logR, an improved ΔlogR algorithm, and to represent the heterogeneity of lacustrine source rocks by using the positive correlation between hydrogen index IH and w(TOC). Hydrocarbon in lacustrine tight oil or shale oil plays can be splitted into two parts:free oil and adsorbed oil. The former mainly occurs in the various scale interbedded tight reservoir layers within the shale plays, and minor exists in the organic matters enriched intervals; the latter is mainly located in the organic matters enriched intervals in the shale plays. Only free oil has an economical value because the adsorbed oil cannot be produced according to the present exploitation technology. The quantitative model of free oil and adsorbed oil in source rock can be calibrated with practical geochemical data to calulate the amount of free oil, adsorbed oil, and original oil in-place. The recovery ratio of tight oil or shale oil depends on the hydrocarbon mobility, which is controlled by maturity or hydrocarbon conversion rates. Hydrogen index of organic-rich source rocks (w(TOC) more than 2%) and the modified models are recommended to refine maturity or conversion rate. A case study from Biyang basin has been provided to show how to predict hydrocarbon mobility trend from hydrocarbon generation model and practical Rock-Eval data.

Key words: tight oil, shale oil, free oil, adsorbed oil, mobility, Biyang basin, geochemical

中图分类号: 

  • P618.13

[1] 梁狄刚,冉隆辉,戴弹申,等. 四川盆地中北部侏罗系大面积非常规石油勘探潜力的再认识[J].石油学报,2011,32(1):8-17. Liang Digang, Ran Longhui, Dai Danshen, et al. A Re-Recognition of the Prospecting Potential of Jurassic Large-Area and Non-Conventional Oils in the Central-Northern Sichuan Basin[J]. Acta Petrolei Sinica, 2011,32(1):8-17.

[2] 贾承造,邹才能,李建总,等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报,2012,33(3):343-350. Jia Chengzao, Zou Caineng, Li Jianzong. et al. Assessment Criteria, Main Types, Basic Features and Resource Prospect of the Tight Oil in China[J]. Acta Petrolei Sinica, 2012,33(3):343-350.

[3] 杨华,付金华,何海清,等. 鄂尔多斯盆地华庆地区低渗透岩性大油区形成与分布[J].石油勘探与开发,2012,39(6):641-648. Yang Hua, Fu Jinhua, He Haiqing, et al, Formation and Distribution of Large Low Peameability Lithological Oil Regions in Huaqing, Ordos Basin[J]. Petroleum Exploration and Development, 2012, 39(6):641-648.

[4] 邹才能,杨智,崔景伟,等. 页岩油形成机理、地质特征及发展对策[J]. 石油勘探与开发,2013,40(1):14-26. Zou Caineng, Yang Zhi, Cui Jingwei, et al. Formation Mechanism, Geological Characteristics and Development Strategy of Nonmarine Shale Oil in China[J]. Petroleum Exploration and Development, 2013, 40(1):14-26.

[5] 杨华,李士祥,刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报,2013,34(1):1-11. Yang Hua, Li Shixiang, Liu Xianyang. Characteristics and Resource Prospects of Tight Oil and Shale Oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013,34(1):1-11.

[6] U S Energy Information Administration. World Shale Gas Resources:An Initial Assessment of 14 Regions Outside the United States[R]. Washington D C:U S Energy Information Administration,2011.

[7] 王飞宇,贺志勇,孟晓辉,等. 综合有机成熟、吸附和PVT模拟预测页岩气量:以Barnett页岩和四川盆地志留系页岩为例[M]//2010中国非常规天然气勘探开发技术进展. 北京:石油工业出版社,2011:167-178. Wang Feiyu, He Zhiyong, Meng Xiaohui, et al. Integrated Organic Maturation, Absorption and PVT Modeling to Predict Original Gas in Place of Shale:Case Studies of Barnett Shale and the Silurian Shale from Sichuan Basin[M]//The Technical Progress in Exploration and Development for Unconventional Hydrocarbons in China. Beijing:Petroleum Industry Press, 2010:167-178.

[8] 王飞宇,贺志勇,孟晓辉,等. 页岩气赋存形式和初始原地气量(OGIP)预测技术[J]. 天然气地球科学,2011,22(3):1-10. Wang Feiyu, He Zhiyong, Meng Xiaohui, et al. Occurrence of Shale Gas and Prediction of Original Gas in-Place (OGIP)[J]. Natural Gas Geoscience, 2011, 22(3):1-10.

[9] Cook T. Calculation of Estimated Ultimate Recovery (EUR) for Wells in Continuous-Type Oil and Gas Accumulations of the Uinta-Piceance Province[M]//USGS Uinta-Piceance Assessment Tean. Petroleum Systems and Geologic Assessment of Oil and Gas in the Uinta-Piceance Province,Utah and Colorado.Denver:[s.n.],2005:1-5.

[10] Pollastro R M, Cook T A, Roberts L N, et al. Assessment of Undiscovered Oil Resources in the Devonian-Mississippian Bakken Formation, Williston Basin Province, Montana and North Dakota, 2008[R].[S. l.]:Geological Survey, 2008.

[11] 王飞宇,王波,金涛,等. 松辽盆地北部中浅层烃源灶定量表征、油气成藏和资源空间分布[R]. 大庆:大庆油田勘探开发研究院,2008. Wang Feiyu, Wang Bo, Jin Tao, et al. Quantitative Characterization of Source Kitchen, and Distributions of Hydrocarbon Accumulations and Resources in the Shallow Section of Songliao Basin[R]. Daqing:Reasearch Institute of Exploration and Development of Daqing Oilfield Company Ltd, 2008.

[12] 王飞宇,严开峰,陈敬轶,等. 典型含气盆地气源灶定量分析及供气特征[R]. 大庆:大庆油田,2010. Wang Feiyu, Yan Kaifeng, Chen Jingyi, et al. Analysis for Quantitative Characterization and Feature of Gas-Prone Source Kitchen in Typical Gas-Bearing Basin[R]. Daqing:Daqing Oilfield, 2010.

[13] Wang Feiyu,Wang Bo,He Zhiyong.Geochemical Ch-aracterization of the Heterogeneous Source Rocks in Petroleum System Modeling[J]. Geochimica et Cosmochimica Acta, 2010,74(12):A1101.

[14] Passey Q R,Creaney S, Kulla J B. A Practical Model for Organic Richness from Porosity and Resistivity Logs[J]. AAPG Bulletin, 1990, 74(12):1777-1794.

[15] Passy Q R,Bohacs K M,Esch W L,et al. From Oil Prone Source Rocks to Gas Producing Shale Reservoir:Geologic and Petrophysical Characterization of Unconventional Shale Gas Resevoirs[C]//CPS/SPE International Oil and Gas Conterence and Exhibition. 2010,SPE 131350.

[16] Stephen A,Sonnenberg,James Vickery,et al. Middle Bakken Facies, Williston Basin,USA:A Key to Prolific Production[Z]. AAPG Search and Discovery Article #50449, 2011.

[17] Cosima Theloy, Stephen A. Sonnenberg. Factors Influencing Productivity in the Bakken Play, Williston Basin[Z].AAPG Search and Discovery Article #10413, 2012.

[18] Pepper A, Corvi P. Simple Kinetic Models of Petroleum Formation:Part III:Modeling an Open System[J]. Marine and Petroleum Geology,1995,12(4):417-452.

[19] Wang F P,Reed R M. Pore Networks and Fluid Flow in Gas Shale[C]//SPE Annual Technical Conterence and Exhibition.[S.l.]:Society of Petroleum Engineers, 2009,SPE 124253.

[20] Hart Energy Research Group. Global Shale Gas Study[Z]. Houston:Hart Energy Publishing, 2011:158.

[21] Cander H. Sweet Spots in Shale Gas and Liquids Plays:Prediction of Fluid Composition and Reservoir Pressure[Z]. Search and Discovery Article #40936, 2012.

[22] 邹才能,陶士振,白斌,等. 论非常规油气与常规油气的区别和联系[J]. 中国石油勘探,2015(1):1-16. Zou Caineng,Tao Shizhen,Bai Bin,et al.Difference and Relations Between Unconventional and Conventional Oil and Gas[J].China Petroleum Exploration,2015(1):1-16.

[1] 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104.
[2] 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134.
[3] 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105-1120.
[4] 赵希林, 姜杨, 邢光福, 于胜尧, 彭银彪, 黄文成, 王存智, 靳国栋. 陈蔡早古生代俯冲增生杂岩对华夏与扬子地块拼合过程的指示意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1135-1153.
[5] 王朝阳, 孟恩, 李壮, 李艳广, 靳梦琪. 吉东南新太古代晚期片麻岩类的时代、成因及其对早期地壳形成演化的制约[J]. 吉林大学学报(地球科学版), 2018, 48(3): 587-625.
[6] 尹业长, 郝立波, 赵玉岩, 石厚礼, 田午, 张豫华, 陆继龙. 冀东高家店和蛇盘兔花岗岩体:年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(2): 574-586.
[7] 齐天骄, 薛春纪, 许碧霞. 新疆昭苏布合塔铜(金)矿化区花岗质岩石锆石U-Pb年龄、地球化学特征及其成因[J]. 吉林大学学报(地球科学版), 2018, 48(1): 132-144.
[8] 孙凡婷, 刘晨, 邱殿明, 鲁倩, 贺云鹏, 张铭杰. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据[J]. 吉林大学学报(地球科学版), 2018, 48(1): 145-164.
[9] 张超, 崔芳华, 张照录, 耿瑞, 宋明春. 鲁西金岭地区含矿闪长岩体成因:来自锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1732-1745.
[10] 施珂, 张达玉, 丁宁, 王德恩, 陈雪锋. 皖南逍遥岩体的年代学、地球化学特征及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1746-1762.
[11] 谭洪旗, 刘玉平. 滇东南猛洞岩群斜长角闪岩成因及其构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1763-1783.
[12] 张焕旭, 陈世加, 路俊刚, 刘超威, 陈娟, 李勇, 徐坤. “膨胀力”作用下致密砂岩储层石油运聚特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1341-1351.
[13] 陈治军, 任来义, 贺永红, 刘护创, 宋健. 银额盆地哈日凹陷银根组优质烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1352-1364.
[14] 王师捷, 徐仲元, 董晓杰, 杜洋, 崔维龙, 王阳. 华北板块北缘中段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1442-1457.
[15] 许中杰, 蓝艺植, 程日辉, 李双林. 句容地区下奥陶统仑山组海平面变化的碳酸盐岩地球化学记录[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1458-1470.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!