吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (5): 1434-1450.doi: 10.13278/j.cnki.jjuese.20170028

• 地质工程与环境工程 • 上一篇    下一篇

苏北沿海三市三维地下水流数值模拟

陈雄1, 张岩2, 王艺伟1, 叶淑君1, 吴吉春1, 于军2, 龚绪龙2   

  1. 1. 南京大学地球科学与工程学院, 南京 210023;
    2. 国土资源部地裂缝地质灾害重点实验室(江苏省地质调查研究院), 南京 210018
  • 收稿日期:2018-01-21 发布日期:2018-11-20
  • 通讯作者: 叶淑君(1974-),女,教授,博士,主要从事地下水数值模拟及地面沉降数值模拟方向的研究,E-mail:sjye@nju.edu.cn E-mail:sjye@nju.edu.cn
  • 作者简介:陈雄(1991-),男,硕士,主要从事地下水数值模拟方面的研究,E-mail:xiongchennju@163.com
  • 基金资助:
    国家自然科学基金项目(41272259)

Numerical Simulation of Three Dimensional Groundwater Flow in Three Coastal Cities of North Jiangsu

Chen Xiong1, Zhang Yan2, Wang Yiwei1, Ye Shujun1, Wu Jichun1, Yu Jun2, Gong Xulong2   

  1. 1. Department of Hydrosciences, Nanjing University, Nanjing 210023, China;
    2. Key Laboratory of Earth Fissures Geological Disaster, Ministry of Land and Resources(Geological Survey of Jiangsu Province), Nanjing 210018, China
  • Received:2018-01-21 Published:2018-11-20
  • Supported by:
    Supported by National Natural Science Foundation of China(41272259)

摘要: 20世纪80年代以来,苏北沿海三市(连云港、盐城和南通)地下水过量开采导致部分地区水位持续大幅下降,引发地面沉降、水质咸化等问题。本文基于研究区大量地质、水文地质资料,以及2005—2013年地下水开采和水位观测数据,经过模型识别、验证,建立了能刻画苏北沿海三市地下水流场演化的三维非均质各向异性地下水流数值模型,模拟了研究区2005—2013年开采量由约2.03亿m3逐渐减少到1.56亿m3条件下深部地下水系统流场(包括第Ⅱ、Ⅲ、Ⅳ承压含水层)的动态演化过程。结果表明,各观测孔的水位实测值与模拟值吻合良好,水位及水均衡模拟结果显示各含水层水位下降得到有效控制,但是该区域地下水仍处于超采状态。为进一步控制水位下降,防治咸水扩散、地面沉降等地质环境灾害,模型预测并比较了现状开采和限制开采2种不同开采方案下2014—2020年苏北沿海三市深层地下水流场的变化趋势。预报结果显示,2种开采方案下,各含水层水位下降速率均减小,尤其是限制开采方案下,第Ⅱ、Ⅲ和Ⅳ承压含水层的区域水位平均下降速率依次为0.15、0.16和0.15 m/a,分别比模拟期减小了46.43%、65.21%和48.28%,在开采强度降至最低的条件下储存量变化速率仍为负值,说明需要进一步加强地下水限制开采的力度。

关键词: 苏北沿海, 复合含水系统, 三维数值模型, 地下水开采

Abstract: Since 1980s, the over-exploitation of groundwater has caused a significant and persistent decline of water levels in some areas of the three coastal cities of north Jiangsu (Lianyungang, Yancheng, and Nantong), land subsidence, water salinization, and other issues. Based on the previous study and the boreholes and water level observation data from 2005 to 2013, the authors established a three dimensional heterogeneous anisotropic groundwater flow numerical model. It can truly calculate the evolution of groundwater flow field in this area after calibration and verification. The groundwater flow was simulated between 2005 and 2013, and the calculated results fitted the observation data well for every observation well. The simulation results of water level and water balance showed that the decreases of groundwater levels of every confined aquifer were effectively controlled through reducing the groundwater exploitation, although the groundwater in this area was still in the state of over exploitation. In consideration with the requirement of controlling geological environment disasters including salt water diffusion and land subsidence, the model predicted and compared the evolution of deep groundwater flow fields (including the confined aquifers Ⅱ, Ⅲ and Ⅳ) under two different exploitation strategies until 2020. The predictions revealed that the decreases in groundwater levels of every confined aquifer under two strategies were well controlled. Especially with the control exploitation strategy, the average decreasing rates of the confined aquifers Ⅱ, Ⅲ, Ⅳ were 0.15, 0.16 and 0.15 m/a respectively, which were reduced by 46.43%, 65.21% and 48.28% comparing with that in the simulated period in this study. The negative variation rate of storage volume under the lowest pumping intensity suggests that it is necessary to further reduce the exploitation of groundwater.

Key words: coastal north Jiangsu, multi-aquifers system, three dimensional numerical model, groundwater exploitation

中图分类号: 

  • P641.2
[1] Ye S, Luo Y, Wu J, et al. Three-Dimensional Numerical Modeling of Land Subsidence in Shanghai, China[J]. Hydrogeology Journal, 2016, 24(3):695-709.
[2] Ye S, Xue Y, Wu J, et al. Progression and Mitigation of Land Subsidence in China[J]. Hydrogeology Journal, 2016, 24(3):685-693.
[3] Galloway D L, Burbey T J. Review:Regional Land Subsidence Accompanying Groundwater Extraction[J]. Hydrogeology Journal, 2011, 19(8):1459-1486.
[4] Ye S, Xue Y, Wu J, et al. Regional Land Subsidence Model Embodying Complex Deformation[C]//Proceedings of the Institution of Civil Engineers-Water Management[J]. Thomas Telford Ltd, 2011, 164(10):519-531.
[5] Galloway D L, Burbey T J. Review:Regional Land Subsidence Accompanying Groundwater Extraction[J]. Hydrogeology Journal, 2011, 19(8):1459-1486.
[6] Bear J, Corapcioglu M Y. Mathematical Model for Regional Land Subsidence Due to Pumping:1:Integrated Aquifer Subsidence Equations Based on Vertical Displacement only[J]. Water Resources Research, 1981, 17(4):937-946.
[7] Bear J, Corapcioglu M Y. Mathematical Model for Regional Land Subsidence Due to Pumping:2:Integrated Aquifer Subsidence Equations for Vertical and Horizontal Displacements[J]. Water Resources Research, 1981, 17(4):947-958.
[8] Budhu M. Earth Fissure Formation from the Mecha-nics of Groundwater Pumping[J]. International Journal of Geomechanics, 2010, 11(1):1-11.
[9] Shi X, Wu J, Ye S, et al. Regional Land Subsidence Simulation in Su-Xi-Chang Area and Shanghai City, China[J]. Engineering Geology, 2008, 100(1):27-42.
[10] Wang G Y, You G, Shi B, et al. Earth Fissures in Jiangsu Province, China and Geological Investigation of Hetang Earth Fissure[J]. Environmental Earth Sciences, 2010, 60(1):35-43.
[11] 邓亚虹, 彭建兵, 慕焕东, 等. 渭河盆地深部构造活动的地裂缝孕育机理[J]. 吉林大学学报(地球科学版), 2013,43(2):521-527. Deng Yahong, Peng Jianbing, Mu Huandong,et al. Ground Fissures Germination Mechanism of Deep Structure Activities in Weihe Basin[J]. Journal of Jilin University(Earth Science Edition),2013,43(2):521-527.
[12] Seawater Intrusion in Coastal Aquifers:Concepts, Methods and Practices[M]. New York:Springer Science & Business Media, 1999.
[13] Werner A D, BakkerM, Post V E A, et al. Seawater Intrusion Processes, Investigation and Management:Recent Advances and Future Challenges[J]. Advances in Water Resources, 2013, 51:3-26.
[14] Wu J, Meng F, Wang X, et al. The Development and Control of the Seawater Intrusion in the Eastern Coastal of Laizhou Bay, China[J]. Environmental Geology, 2008, 54(8):1763-1770.
[15] 李培月. 人类活动影响下地下水环境研究[D].西安:长安大学, 2014. Li Peiyue. Research on Groundwater Environment under Human Interferences:A Case Study from Weining Plain, Northwest China[D].Xi'an:Chang'an University,2014.
[16] 王欣宝, 王艳, 王昕洲. 河北平原过量开采地下水引起的环境地质问题及对策研究[J]. 河北地质, 2006(2):15-19. Wang Xinbao, Wang Yan, Wang Xinzhou. Study on Environmental Geological Problems Caused by over Exploitation of Groundwater in Hebei Plain[J]. Hebei Geology, 2006(2):15-19.
[17] 施小清, 冯志祥, 姚炳奎, 等. 江苏省地下水水位控制红线划定研究[J]. 中国水利, 2015(1):46-49. Shi Xiaoqing, Feng Zhixiang, Yao Bingkui, et al. Delimition of Red Lines of Groundwater Level in Jiangsu Province[J]. China Water Resource, 2015(1):46-49.
[18] 黄敬军, 陆华. 江苏沿海地区深层地下水开发利用现状及环境地质问题[J]. 水文地质工程地质, 2004, 31(6):64-68. Huang Jingjun, Lu Hua. Aquifers and Environmental Geological Problems in the Coastal Areas in Jiangsu Province[J]. Hydrogeology and Engineering Geology, 2004, 31(6):64-68.
[19] 雷志祥, 张海云, 朱丽向. 连云港市地下水资源开发利用与保护探讨[J]. 人民长江, 2010, 41(9):18-21. Lei Zhixiang, Zhang Haiyun,Zhu Lixiang. Discussion on Development, Utilization and Protection of Groundwater Resources in Lianyungang City[J]. Yangtze River, 2010, 41(9):18-21.
[20] 乐峰, 方瑞, 朱骊, 等. 南通市地下水超采区环境地质问题及治理措施[J]. 地下水, 2014(4):95-96. Le Feng, Fang Rui, Zhu Li,et al. Environmental Geological Problems and Govern Measures of Groundwater Over-Exploitation Area in Nantong City[J]. Groundwater, 2014(4):95-96.
[21] 单卫华. 江苏南通市地下水主采层水位动态区域演变特征[J]. 江苏地质, 2007, 31(3):276-280. Shan Weihua. Regional Evolution Properties of Dynamic Water Level in Main Extraction Sequences in Nantong, Jiangsu[J]. Jiangsu Geology, 2007, 31(3):276-280.
[22] 王艺伟. 苏北沿海地区区域地面沉降模拟研究[D].南京:南京大学,2016 Wang Yiwei. Numerical of Regional Land Subsidence in North Coastal Area of North Jiangsu[D]. Nanjing:Nanjing University, 2016.
[23] 凌家荣, 钱庆龙. 盐城市地下水资源调查评价[J]. 水利水电科技进展, 2000, 20(3):48-50. Ling Jiarong, Qian Qinlong. Investigation and Evaluation of Groundwater Resources in Yancheng City[J]. Advances in Science and Technology of Water Resources, 2000, 20(3):48-50.
[24] 骆祖江, 武永霞. 盐城市地下水资源规划评价三维数值模型[J]. 水资源保护, 2005, 21(5):37-41. Luo Zujiang, Wu Yongxia. Three-Dimensional Numerical Model for Groundwater Resource Evaluation and Plan in Yancheng[J]. Water Resource Protection, 2005, 21(5):37-41.
[25] 葛伟亚. 盐城市地下水系统三维数值模拟[D]. 南京:河海大学, 2004. Ge Weiya. The Three-Dimensional Numerical Simulation for Groundwater System in Yancheng City[D]. Nanjing:Hohai University, 2004.
[26] 付延玲. 盐城市地下水资源预测评价[J]. 资源调查与环境, 2005, 26(1):54-59. Fu Yanling. Evaluation of Groundwater Resource of Forecast in Yan Cheng[J]. Resource Survey & Environment, 2005, 26(1):54-59.
[27] 徐玉琳. 江苏省南通市深层含水系统地下水水质咸化特征及成因分析[J]. 中国地质灾害与防治学报, 2002, 13(2):45-49. Xu Yulin. The Salted Properties and Its Origin for Deep Aquifer System in Nantong City[J]. The Chinese Journal of Geological Hazard and Control, 2002, 13(2):45-49.
[28] 安晓宇, 王琦, 桑辉, 等. 南通市地下水开采与地面沉降模拟预测[J]. 勘察科学技术, 2013(1):43-47. An Xiaoyu, Wang Qi, Sang Hui,et al Numerical Simulation and Prediction of Groundwater Exploitation and Land Subsidence in Nantong[J]. Investigation Science and Technology, 2013(1):43-47.
[29] 骆祖江. 南通市第四纪松散沉积层地下水资源评价规划三维数值模型[J]. 水资源保护, 2009, 25(5):19-23. Luo Zujiang. Three-Dimensional Numerical Model for Groundwater Resource Evaluation and Plan in Loose Quaternary Sediments in Nantong[J]. Water Resource Protection,2009,25(5):19-23.
[30] 骆祖江, 姚炳魁, 王晓梅. 复合含水层系统地下水资源评价三维数值模型[J]. 吉林大学学报(地球科学版), 2005, 35(2):188-194. Luo Zujiang, Yao Bingkui, Wang Xiaomei. Three Dimension Numerical Model of Groundwater Resource Evaluation of Complex Aquifer System[J]. Journal of Jilin University(Earth Science Edition), 2005, 35(2):188-194.
[31] 叶淑君, 戴水汉. 地下水流二维、准三维及三维模型模拟结果比较[J]. 水文地质工程地质, 2003, 30(5):23-27. Ye Shujun, Dai Shuihan. Comparing of Results of Two Dimensional, Quasi Three Dimensional and Three Dimensional Models for Groundwater[J]. Hydrogeology and Engineering Geology, 2003, 30(5):23-27.
[32] Bear J. Dynamics of Fluids in Porous Media[M]. New York:Courier Corporation, 2013.
[33] 薛禹群, 朱学愚, 吴吉春,等. 地下水动力学[M]. 北京:地质出版社, 1997. Xue Yuqun, Zhu Xueyu, Wu Jichun,et al. Groundwater Dynamics[M]. Beijing:Geological Publishing House, 1997.
[34] 吴吉春, 薛禹群, 靳孟贵. 地下水动力学[M]. 北京:地质出版社, 2009. Wu Jichun,Xue Yuqun, Ji Menggui. Groundwater Dynamics[M]. Beijing:Geological Publishing House, 2009.
[35] 祝晓彬. 地下水模拟系统(GMS)软件[J]. 水文地质工程地质, 2003, 30(5):53-55. Zhu Xiaobin. Groundwater Modeling System (GMS) Software[J]. Hydrogeology and Engineering Geology, 2003, 30(5):53-55.
[36] Fu C, Chen J, Zeng S, et al. Hydrological Model of Weathered Granite Watershed Based on Prototype Monitoring and DEM[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(10):90-98.
[1] 骆祖江, 曾峰, 郭华, 吴刚. 地下饮用水水源保护区划分三维渗流与溶质运移耦合数值模型[J]. J4, 2010, 40(6): 1353-1358.
[2] 方樟, 肖长来, 姚淑荣, 马喆, 许斌, 任妍儒. 黑龙江宝清露天煤矿首采区多层含水层地下水数值模拟[J]. J4, 2010, 40(3): 610-616.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!