吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (5): 1427-1433.doi: 10.13278/j.cnki.jjuese.20170107

• 地质工程与环境工程 • 上一篇    下一篇

滑坡充气截排水有效性数值模拟

陈永珍1, 吴纲1, 孙红月1, 尚岳全2   

  1. 1. 浙江大学海洋学院, 舟山 316021;
    2. 浙江大学建筑工程学院, 杭州 310058
  • 收稿日期:2018-01-17 发布日期:2018-11-20
  • 通讯作者: 孙红月(1970-),女,教授,博士,主要从事地质灾害防治方面的研究,E-mail:shy@zju.edu.cn E-mail:shy@zju.edu.cn
  • 作者简介:陈永珍(1992-),男,硕士研究生,从事地质灾害防治方面的研究,E-mail:chenyongzhen0712@163.com
  • 基金资助:
    国家自然科学基金项目(41372277)

Numerical Simulation of the Efficiency of Intercepting Water with Compressed Air in the Treatment of Landslide

Chen Yongzhen1, Wu Gang1, Sun Hongyue1, Shang Yuequan2   

  1. 1. College of Ocean, Zhejiang University, Zhoushan 316021, Zhejiang, China;
    2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
  • Received:2018-01-17 Published:2018-11-20
  • Supported by:
    Supported by National Natural Science Foundation of China(41372277)

摘要: 为验证充气截排水在实际滑坡中能有效控制坡体地下水位和坡体稳定性,本文以小旦滑坡为例,在滑坡变形破坏发展特征分析和形成机制研究的基础上,采用数值模拟方法研究了充气截排水技术应用在此类滑坡治理中应用的有效性。通过二维有限元数值模拟,分析了不同充气压力下坡体稳定性的变化规律。结果表明:在滑坡后缘适当位置进行充气能够形成稳定的非饱和截水帷幕,达到降低潜在滑坡区地下水位的目的;小旦滑坡的最佳充气压力值为125 kPa,在最佳充气压力作用下,小旦滑坡坡脚未开挖状态下稳定性系数由1.144增大到1.209,开挖状态下的稳定性系数由1.106增大到1.139;雨季边坡后缘入渗量增大的情况下,充气截排水对滑坡稳定性的提高作用更为显著。

关键词: 含碎石堆积层滑坡, 最佳充气压力, 充气截排水, 数值模拟, 稳定性

Abstract: In order to verify that the groundwater level and slope stability can be effectively controlled in an actual landslide by intercepting water with compressed air, based on the analysis of the characteristics and the formation mechanism of landslide deformation and failure, taking the Xiaodan landslide as an example, the authors studied the effectiveness of the intercepting water with compressed air applied in the treatment of this kind of landslide. Through a two-dimensional finite element numerical simulation, the variation law of a slope stability under different inflation pressures was analyzed. It is found that by inflating air into the appropriate edge of a landslide, a stable unsaturated water cut curtain can be formed to reduce the groundwater level in the potential slide area. When the inflation pressure is 125 kPa, which is the optimum inflation pressure of Xiaodan landslide, the stability coefficient increases from 1.144 to 1.209 under unexploited condition; while the stability coefficient increases from 1.106 to 1.139 under excavated condition. When the infiltration from the trailing edge increases during the rainy season, the effectiveness of intercepting water with compressed air is more significant for landslide stability.

Key words: gravel-containing deposited soil landslide, optimal inflation pressure, intercepting water with compressed air, numerical simulation, stability

中图分类号: 

  • P642.22
[1] 李烈荣. 中国地质灾害与防治[M]. 北京:地质出版社,2003. Li Lierong. Geological Hazards and Prevention in China[M]. Beijing:Geological Publishing House, 2003.
[2] 孙红月,吴红梅,李焕强,等. 松散堆积土中的隔水层对边坡稳定性的影响[J]. 浙江大学学报(工学版), 2010,44(10):2016-2020. Sun Hongyue, Wu Hongmei, Li Huanqiang, et al. Influence to Slope Stability Caused by Impermeable Layer in Loose Deposited Soil[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(10):2016-2020.
[3] 俞伯汀,孙红月,尚岳全. 含碎石黏性土边坡渗流系统的物理模拟试验[J]. 岩土工程学报,2006,28(6):705-708. Yu Boting, Sun Hongyue, Shang Yuequan. Physical Model Simulation Tests on Seepage System in Debris-Containing Clay Slopes[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6):705-708.
[4] 尚岳全,孙红月,侯利国,等. 管网渗流系统对含碎石黏性土边坡的稳定作用[J]. 岩石力学与工程学报,2005,24(8):1371-1375. Shang Yuequan, Sun Hongyue, Hou Liguo, et al. Study on the Stability of Pebbly-Clay Slopes with Pipe Drainage System[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(8):1371-1375.
[5] 尚岳全,周建锋,童文德. 含碎块石土质边坡的稳定性问题[J]. 地质灾害与环境保护,2002,13(1):41-43. Shang Yuequan, Zhou Jianfeng, Tong Wende. The Influence of Pipe Seepage System on the Stability of a Pebbly-Clay Slope[J]. Journal of Geological Hazards and Environment Preservation, 2002, 13(1):41-43.
[6] 杜丽丽,孙红月,尚岳全. 松散堆积土边坡充气排水方法[J]. 吉林大学学报(地球科学版),2013,43(3):877-882. Du Lili, Sun Hongyue, Shang Yuequan. Air-Filled Drainage Method in Loose Accumulation Soil Slope[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(3):877-882.
[7] 杜丽丽,孙红月,尚岳全,等. 滑坡应急治理充气截水方法[J]. 岩石力学与工程学报,2013,32(增刊2):3954-3960. Du Lili, Sun Hongyue, Shang Yuequan, et al. Method of Intercepting Water by Filting Soil with Air in Emergency Treatment Engineering of Landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Sup.2):3954-3960.
[8] 杜丽丽,孙红月,尚岳全,等. 充气截排水滑坡治理数值模拟研究[J]. 岩石力学与工程学报,2014,33(增刊1):2628-2634. Du Lili, Sun Hongyue, Shang Yuequan, et al. Simulation of Numerical Control of Pneumatic Cut-off Method for Landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup.1):2628-2634.
[9] 康剑伟,孙红月,刘长殿. 一维土柱高压充气阻渗法的数值模拟[J]. 公路工程,2013,38(3):67-71. Kang Jianwei, Sun Hongyue, Liu Changdian. Numerical Simulation of High-Pressure Infiltration Resistance of One-Dimensional Soil Column[J]. Highway Engineering, 2013, 38(3):67-71.
[10] 钱文见,尚岳全,杜丽丽,等. 充气位置及压力对边坡截排水效果的影响[J]. 吉林大学学报(地球科学版),2016,46(2):536-542. Qian Wenjian, Shang Yuequan, Du Lili, et al. Influences of Inflation Location and Pressure on Draining of Slope[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(2):536-542.
[11] 余文飞,孙红月,尚岳全,等. 坡体充气过程中气水两相流数值模拟[J]. 岩石力学与工程学报,2016(增刊2):3597-3604. Yu Wenfei, Sun Hongyue, Shang Yuequan, et al. Numerical Simulation of Air-Water Two-Phase Flow in Inflatable Slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2016(Sup.2):3597-3604.
[12] Collins R E. 流体通过多孔材料的流动[M]. 陈钟祥译. 北京:石油工业出版社,1984:63-65. Collins R E. Flow of Fluids Through Porous Materials[M]. Translated by Chen Zhongxiang. Beijing:Petroleum Industry Press, 1984:63-65.
[13] Geo-Slope International Ltd. Air Flow Modeling with AIR/W 2007[M]. Calgary:Geo-Slope International Ltd Press, 2008:117-120.
[14] Van Genuchten M T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils[J]. Soil Science Society of America Journal, 1980, 44:892-898.
[15] 常士骠,张苏民,项勃,等. 工程地质手册[M]. 四版. 北京:中国建筑工业出版社,2006:536-538. Chang Shibiao, Zhang Sumin, Xiang Bo, et al. Engineering Geology Handbook[M]. 4th ed. Beijing:China Architecture and Building Press, 2006:536-538.
[16] 南京大学水文地质工程地质教研室. 工程地质学[M]. 北京:地质出版社,1982. Staff of Hydrogeology and Engineering Geology of Nanjing University. Engineering Geology[M]. Beijing:Geological Publishing House, 1982.
[17] 贝尔J. 多孔介质流体动力学[M]. 李竞生,陈崇希译. 北京:中国建筑工业出版社,1983:346-450. Bear J. Dynamics of Fluids in Porous Media[M]. Translated by Li Jingsheng, Chen Chongxi. Beijing:China Architecture and Building Press, 1983:346-450.
[1] 张丙先. 西藏玉曲河下游岸坡倾倒变形机制及稳定性分析[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1539-1545.
[2] 唐军峰, 唐雪梅, 曾向农, 杨军, 李学政. 蓄水后库岸堆积体边坡变形特征及其稳定性分析[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1546-1555.
[3] 李志远, 宫海灵, 张永辉, 李璞. 某电站地下厂房裂隙发育规律及其对围岩稳定性的影响[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1574-1580.
[4] 杨继华, 路新景, 闫长斌, 齐三红, 郭卫新. 基于模糊综合评判的护盾式TBM施工围岩稳定性分类[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1596-1602.
[5] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[6] 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716.
[7] 谭家华, 雷宏武. 基于GMS的三维TOUGH2模型及模拟[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1229-1235.
[8] 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533.
[9] 习建军, 曾昭发, 黄玲, 崔丹丹, 王者江. 阵列式探地雷达信号极化场特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 633-644.
[10] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[11] 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用——研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1231-1259.
[12] 王常明, 常高奇, 吴谦, 李文涛. 静压管桩桩-土作用机制及其竖向承载力确定方法[J]. 吉林大学学报(地球科学版), 2016, 46(3): 805-813.
[13] 钱文见, 尚岳全, 杜丽丽, 朱森俊. 充气位置及压力对边坡截排水效果的影响[J]. 吉林大学学报(地球科学版), 2016, 46(2): 536-542.
[14] 喻鹏, 马腾, 唐仲华, 周炜. 盆地异常低压系统处置油田污水可行性[J]. 吉林大学学报(地球科学版), 2016, 46(1): 211-219.
[15] 那金, 许天福, 魏铭聪, 冯波, 鲍新华, 姜雪. 增强地热系统热储层-盐水-CO2相互作用[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1493-1501.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!