吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (6): 1578-1590.doi: 10.13278/j.cnki.jjuese.20180209
雷如雄1, 赵同阳2, 李平2, 董连慧2, 李基宏3, 吴昌志4
Lei Ruxiong1, Zhao Tongyang2, Li Ping2, Dong Lianhui2, Li Jihong3, Wu Changzhi4
摘要: 大平沟金矿床是北阿尔金地区典型金矿床之一,矿化类型以钾长石-石英脉型和蚀变岩型为主,矿体赋存于近东西向韧性剪切带中,围岩为太古宇米兰岩群钾长变粒岩。矿石矿物以黄铁矿为主,另有少量褐铁矿和自然金等。大平沟金矿床含金石英脉中石英的δ18OVSMOW值为12.4‰~15.3‰,估算的流体δ18OH2O值介于7.4‰~10.3‰之间,石英中流体包裹体的氢同位素为-97‰~-66‰,表明成矿流体以变质流体来源为主;含金石英脉中硫化物的δ34SVCDT值为6.9‰~8.3‰,主要为壳源硫,与典型造山型金矿的硫值一致;硫化物的206Pb/204Pb值为18.310 1~19.373 9,207Pb/204Pb值为15.587 2~15.654 1,而208Pb/204Pb值为38.119 1~39.143 9,反映硫化物的铅来源具有造山带铅特征。综合分析认为,大平沟金矿床属于造山型金矿,其形成受近东西向次级断裂和韧性剪切带控制,成矿流体以变质流体为主,成矿物质来源于太古宙深变质岩。
中图分类号:
[1] 陈衍景.造山型矿床、成矿模式及找矿潜力[J].中国地质,2006, 33(6):1181-1196. Chen Yanjing. Orogenic-Type Deposits and Their Metallogenic Model and Exploration Potential[J]. Geology in China,2006, 33(6):1181-1196. [2] Groves D I, Goldfarb R J, Gebre-Mariam M, et al. Orogenicgold Deposits:A Proposed Classification in the Context of Their Crustal Distributionand Relationship to Other Gold Deposit Types[J]. Ore Geology Reviews,1998, 13:7-27. [3] Groves D I, Goldfarb R J, Robert F,et al. Gold Deposits in Metamorphic Belts:Overview of Current Understanding,Outstanding Problems,Future Research,and Exploration Significance[J]. Economic Geology,2003, 98(1):1-29. [4] Goldfarb R J, Groves D I, Cardoll S. Orogenic Au and Geologic Time:A Global Synthesis[J].Ore Geology Reviews,2001, 18:1-75. [5] Goldfarb R J, Snee L W, Pickthorn W J. Orogenesis, High-T Thermal Events, and Gold Vein Formation Within Metamorphic Rocks of the Alaskan Cordillera[J]. Mineralogical Magazine,1993,57(3):375-394. [6] Goldfarb R J, Baker T, Dube B, et al. Distribution, Character and Genesis of Gold Deposits in Metamorphic Terranes[J]. Economic Geology, 2005, 100:407-450. [7] 毛景文,张作衡,王义天,等.华北克拉通周缘中生代造山型金矿床的氮同位素和氮含量记录[J].中国科学:D辑,2002,32(9):705-716. Mao Jingwen, Zhang Zuoheng, Wang Yitian, et al. Nitrogenisotope and Content Record of Mesozoic Orogenic Gold Deposits Surrounding the North China Craton[J]. Science in China:Series D, 2002, 32(9):705-716. [8] Chen H Y, Chen Y J, Baker M.Isotopic Geochemistry of the Sawayaerdun Orogenic Type Gold Deposit, Tianshan, Northwest China:Implications for Ore Genesis and Mineral Exploration[J]. Chemical Geology,2012, 310:1-11. [9] Chen Y J,Pirajno F,Qi J P,et al.The Shanggong Gold Deposit,Eastern Qinling Orogen,China:Isotope Geochemistry and Implications for Ore Genesis[J].Journal of Asian Earth Sciences,2008,33:252-266. [10] 蒋少涌,戴宝章,姜耀辉,等.胶东和小秦岭:两类不同构造环境中的造山型金矿省[J].岩石学报,2009, 25(11):2727-2738. Jiang Shaoyong,Dai Baozhang,Jiang Yaohui,et al.Jiaodong and Xiaoqinling:Two Orogenic Gold Provinces Formed in Different Tectonic Settings[J]. Acta Petrologica Sinica,2009,25(11):2727-2738. [11] 邱正杰, 范宏瑞, 丛培章, 等. 造山型金矿床成矿过程研究进展[J]. 矿床地质, 2015, 34(1):21-38. Qiu Zhengjie, Fan Hongrui, Cong Peizhang, et al. Recent Progress in the Study of Ore-Forming Processes of Orogenic Gold Deposits[J].Mineral Deposits, 2015, 34(1):21-38. [12] 李惠民, 陆松年, 郑健康, 等. 阿尔金山东端花岗片麻岩中3.6 Ga锆石的地质意义[J]. 矿物岩石地球化学通报, 2001, 20(4):259-262. Li Huimin, Lu Songnian, Zheng Jiankang, et al.Dating of 3.6 Ga Zircons in Granite-Gneiss from the Eastern Altyn Mountains and Its Geological Significance[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4):259-262. [13] 张建新,孟繁聪,于胜尧.两条不同类型的HP/LT和UHP变质带对祁连-阿尔金早古生代造山作用的制约[J].岩石学报,2010, 26(7):1967-1992. Zhang Jianxin, Meng Fancong, Yu Shengyao. Two Contrasting HP/LT and UHP Metamorphic Belts:Constraint on Early Paleozoic Orogeny in Qilian-Altun Orogen[J].Acta Petrologica Sinica, 2010, 26(7):1967-1992. [14] 杨经绥,史仁灯,吴才来,等. 北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年[J].岩石学报,2008, 24(7):1567-1584. Yang Jingsui,Shi Rendeng,Wu Cailai,et al. Petrology and SHRIMP Age of the Hongliugou Ophiolite at Milan,North Altun,at the Northern Margin of the Tibetan Plateau[J].Acta Petrologica Sinica,2008, 24(7):1567-1584. [15] 韩凤彬,陈柏林,崔玲玲,等. 阿尔金山喀腊大湾地区中酸性侵入岩SHRIMP年龄及其意义[J].岩石学报,2012,28(7):2277-2291. Han Fengbin,Chen Bailin,Cui Lingling,et al. Zircon SHRIMP U-Pb Age of Intermediate-Acid Intrusive Rocks in Kaladawan Area,Eastern Altun Mountains,NW China,and Its Implications[J]. Acta Petrologica Sinica,2012,28(7):2277-2291. [16] 陈柏林,王世新,祁万修,等.阿尔金北缘大平沟韧脆性变形带特征[J].岩石学报,2008, 24(4):637-644. Chen Bailin,Wang Shixin,Qi Wanxiu,et al. Study on the Dapinggou Ductile-Brittle Deformation Belt in Northern Altun Margin Area,NW China[J]. Acta Petrologica Sinica, 2008, 24(4):637-644. [17] 陈宣华,Gehrels G,王小凤,等.阿尔金山北缘花岗岩的形成时代及其构造环境探讨[J].矿物岩石地球化学通报,2003, 22(4):294-298. Chen Xuanhua,Gehrels G,Wang Xiaofeng,et al. Granite from North Altyn Tagh,NW China:U-Pb Geochronology and Tectonic Setting[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2003, 22(4):294-298. [18] 吴才来,姚尚志,曾令森,等.北阿尔金巴什考供-斯米尔布拉克花岗杂岩特征及锆石SHRIMP U-Pb定年[J].中国科学:D辑, 2007,37(1):10-26. Wu Cailai,Yao Shangzhi,Zeng Lingsen,et al.Characteristics of the Granitoid Complex and Its Zircon SHRIMP Dating in the Bashikaogong-Simierbulake Area, North Altun, NW China[J]. Science in China:Series D, 2007,37(1):10-26. [19] 刘良,车自成,王焰,等. 阿尔金高压变质岩带的特征及其构造意义[J].岩石学报,1999, 5(1):57-64. Liu Liang,Che Zicheng,Wang Yan,et al. The Petrological Characters and Geotectonic Setting of High-Pressure Metamorphic Rock Belts in Altun Mountains[J]. Acta Petrologica Sinica,1999, 5(1):57-64. [20] Yin A, Rumelhart P E, Butler R,et al. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation[J]. Geological Society of America Bulletin, 2002, 114(10):1257-1295. [21] 杨屹,陈宣华,Gehrels G E,等.阿尔金山早古生代岩浆活动与金成矿作用[J].矿床地质,2004, 23(4):464-472. Yang Yi,Chen Xuanhua,Gehrels G E,et al. Early Paleozoic Magmatism and Gold Metallogenesis in Altun Mountains, Northwest China[J]. Mineral Deposits,2004, 23(4):464-472. [22] Lu S N, Li H K, Zhang C L,et al. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments[J]. Precambrian Research, 2008, 160(1/2):94-107. [23] Meng L T, Chen B L, Zhao N N,et al. The Discribution, Geochronology and Geochemistry of Early Palaeozoic Granitoid Plutons in the North Altun Orogenic Belt, NW China:Implication for the Petrogenesis and Tectonic Evolution[J]. Lithos, 2017, 268/269/270/271:399-417. [24] 孟令通, 陈柏林, 罗迪柯, 等. 北阿尔金喀腊大湾地区4337高地花岗闪长岩SHRIMP U-Pb定年及其构造意义[J]. 吉林大学学报(地球科学版), 2015, 45(6):1757-1771. Meng Lingtong, Chen Bailin, Luo Dike, et al. SHRIMP Zircon U-Pb Geochronology of Northern Highland 4337 Granodiorite in Kaladawan Area of Northern Altun Mountains and Its Tectonic Implications[J].Journal of Jilin University(Earth Science Edition), 2015, 45(6):1757-1771. [25] 陈柏林,杨屹,王小凤,等. 阿尔金北缘大平沟金矿床成因[J].矿床地质,2005, 24(2):168-178. Chen Bailin, Yang Yi, Wang Xiaofeng, et al. Origin of Dapinggou Gold Deposit in Northern Altun Area, Northwestern China[J].Mineral Deposits,2005,24(2):168-178. [26] 李学智, 陈柏林, 王小凤, 等. 大平沟金矿床矿石及金矿物特征[J].地质与勘探, 2002, 38(5):49-53. Li Xuezhi, Chen Bailin, Wang Xiaofeng, et al. Ore Features and Gold Occurrence of the Dapingou Gold Deposit, Xinjiang, Northwest China[J].Geology & Prospecting, 2002, 38(5):49-53. [27] 陈宣华,杨风,王小凤,等.阿尔金北缘地区剥离断层控矿和金矿成因:以大平沟金矿床为例[J]. 吉林大学学报(地球科学版), 2002, 32(2):122-127. Chen Xuanhua, Yang Feng, Wang Xiaofeng, et al. Detachment and Gold Deposit in North Alytn Tagh:An Example Study of Dapingou Gold Deposit[J].Journal of Jilin University(Earth Science Edition),2002, 32(2):122-127. [28] 杨屹,杨风,刘新营,等.阿尔金大平沟金矿床地质特征及成因初探[J]. 新疆地质, 2002, 20(1):44-48. Yang Yi, Yang Feng, Liu Xinying, et al. Geological Feature and Origin of Dapinggou Gold Deposit in Altun Area[J]. Xinjiang Geology, 2002, 20(1):44-48. [29] 杨屹.阿尔金大平沟金矿床成矿时代Rb-Sr定年[J]. 新疆地质, 2003, 21(3):303-306. Yang Yi. Rb-Sr Isotope Age of the Mineralization of Dapinggou Gold Deposits in Altun[J]. Xinjiang Geology, 2003, 21(3):303-306. [30] 王小凤, 陈宣华, 陈正乐, 等. 阿尔金地区成矿条件与远景预测[M]. 北京:地质出版社, 2004:1-463. Wang Xiaofeng, Chen Xuanhua, Chen Zhengle, et al. Geological Setting for Metallogenesis and Prospecting of Ore Deposits in the Altyn Tgah Area[M]. Beijing:Geological Publishing House, 2004:1-463. [31] Zhao K D, Jiang S Y, Ni P, et al. Sulfur, Lead and Helium Isotopic Compositions of Sulfide Minerals from the Dachang Sn-polymetallic Ore District in South China Implication for Ore Genesis[J]. Mineralogy and Petrology, 2007, 89:251-273. [32] Belshaw N S, Freedman P A, O'Nions R K, et al. A New Variable Dispersion Double-Focusing Plasma Mass Spectrometer with Performance Illustrated for Pb Isotopes[J]. International Journal of Mass Spectrometry, 1998, 181:51-58. [33] Robinson B W, Kasakabe M. Quantitative Preparation of Sulfur Dioxide for 34S/32S Analyses from Sulphides by Combustion with Cuprous Oxide[J]. Analytical Chemistry, 1975, 47:1179-1181. [34] Clayton R N, Mayeda T K. The Use of Bromine Pentafluoride in the Extraction of Oxygen from Oxides and Silicates for Isotopic Analysis[J]. Geochimica et Cosmochimica Acta, 1963, 27:43-52. [35] Clayton R N, O'Neil J R, Mayeda T K. Oxygen Isotope Exchange Between Quartzand Water[J]. Journal of Geophysical Research,1972, 77:3057-3067. [36] Zartman R E, Doe B R. Plumbotectonics:The Model[J]. Tectonophysics,1981,75:135-162. [37] Kerrich R, Goldfarb R J, Groves D, et al. The Characteristics, Origins,and Geodynamic Settings of Supergiant Gold Metallogenic Provinces[J]. Science in China:Series D, 2000, 43:1-68. [38] Mc Cuaig C T, Kerrich R. p-T-t-Deformation-Fluid Characteristics of Lode Gold Deposits:Evidence from Alteration Systematics[J]. Ore Geology Review,1998, 12:381-453. [39] Jia Y F, Kerrich R, Goldfarb R. Metamorphic Origin of Ore-Forming Fluids for Orogenic Gold-Bearing Quartz Vein Systems in the North American Cordillera:Constraints Froma Reconnaissance Study of Delta δ15N, δD, and δ18O[J]. Economic Geology, 2003, 98:109-123. [40] Goldfarb R J, Ayuso R, Miller M L, et al. The Late Cretaceous Donlin Creekgold Deposit, Southwestern Alaska:Controls on Epizonal Ore Formation[J]. Economic Geology, 2004, 99:643-671. [41] Hosftra A H, Snee L W, Rye R O, et al. Age Constraints on Jerritt Canyon and Other Carlin-Type Gold Deposits in the Western United States-Relationship to Mid-Tertiary Extension and Magmatism[J]. Economic Geology, 1999, 94:769-802. [42] 李海兵, 许志琴, 杨经绥, 等. 阿尔金断裂带最大累积走滑位移量:900 km?[J].地质通报, 2007, 26(10):1288-1298. Li Haibing, Xu Zhiqin, Yang Jingsui, et al.The Maximum Cumulative Strike-Slip Displacement of the Altyn Tagh Fault:900 km?[J]. Geological Bulletin of China, 2007, 26(10):1288-1298. |
[1] | 孙宏伟, 唐文龙, 刘晓阳, 任军平, 许康康, 吴兴源, 贺福清. 非洲东南部造山型金矿成矿环境与资源潜力分析[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1654-1668. |
[2] | 丁清峰, 付宇, 吴昌志, 董莲慧, 屈迅, 曹长胜, 夏明毅, 孙洪涛. 新疆西南天山阿万达金矿床成矿流体演化[J]. 吉林大学学报(地球科学版), 2015, 45(1): 142-155. |
[3] | 尤敏鑫,刘建民. 同位素地球化学在峨眉山大火成岩省研究中的应用现状与进展[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1231-1243. |
[4] | 丁清峰, 金圣凯, 王冠, 张本龙. 青海省都兰县果洛龙洼金矿成矿流体[J]. 吉林大学学报(地球科学版), 2013, 43(2): 415-426. |
[5] | 丁正江,孙丰月,李碧乐,赵俊伟,李世金. 青海省苦海汞矿床形成条件及成因探讨[J]. J4, 2009, 39(1): 9-0016. |
[6] | 刘金辉,孙占学,史维浚. 运用铀同位素研究砂岩型铀矿的几个问题[J]. J4, 2006, 36(04): 516-520. |
[7] | 刘显凡,宋祥峰,卢秋霞,陶 专,龙训荣. 地幔流体在滇西富碱斑岩成岩成矿过程中的作用--地质年代学和同位素地球化学制约[J]. J4, 2006, 36(04): 503-510. |
|