吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (2): 392-404.doi: 10.13278/j.cnki.jjuese.20190265

• 油页岩成矿与资源评价 • 上一篇    下一篇

松辽盆地北部青一段油页岩地球化学特征及其记录的古湖泊学信息

郑国栋1,2, 孟庆涛3,4, 刘招君3,4   

  1. 1. 山东省鲁南地质工程勘察院, 山东 济宁 272100;
    2. 自然资源部采煤沉陷区综合治理工程技术创新中心, 山东 济宁 272100;
    3. 吉林大学地球科学学院, 长春 130061;
    4. 吉林省油页岩及共生能源矿产重点实验室, 长春 130061
  • 收稿日期:2019-12-09 出版日期:2020-03-26 发布日期:2020-03-31
  • 作者简介:郑国栋(1991-),男,工程师,硕士,主要从事地质勘查与矿山生态地质工作,E-mail:zhengguodong1991@163.com
  • 基金资助:
    国家自然科学基金项目(41872103);中国地质调查局项目(1212011220800)

Geochemical Characteristics and Paleolimnological Information of Oil Shale in 1st Member of Qingshankou Formation in Northern Songliao Basin

Zheng Guodong1,2, Meng Qingtao3,4, Liu Zhaojun3,4   

  1. 1. Lunan Geological Engineering Investigation Institute of Shandong Province, Jining 272100, Shandong, China;
    2. Engineering Innovation Center for Restoration&Reclamation in Mining-Induced Subsidence Land of MNR, Jining 272100, Shandong, China;
    3. College of Earth Sciences, Jilin University, Changchun 130061, China;
    4. Key Laboratory of Oil Shale and Coexistent Energy Minerals of Jilin Province, Changchun 130061, China
  • Received:2019-12-09 Online:2020-03-26 Published:2020-03-31
  • Supported by:
    Supported by National Natural Science Foundation of China (41872103) and Project of China Geological Survey (1212011220800)

摘要: 油页岩地球化学特征及其记录的古湖泊学信息是揭示油页岩成矿富集规律的关键佐证。根据含油率、TOC、岩石热解、元素分析、生物标志化合物检测及有机显微组分分析,精细刻画了松辽盆地北部ZY1井青一段油页岩的地球化学特征,并分析了其记录的古湖泊学信息,探讨了古湖泊对油页岩有机质富集的控制作用。结果表明:青一段发育8层中等偏好品质的油页岩,下部为高品质油页岩富集层段;油页岩的含油率和TOC质量分数相关性极好,处于未熟—低成熟度演化阶段,生烃潜力大;油页岩中含丰富的萜类和甾类化合物,有机质类型主要为Ⅰ型,有机质来源主要为层状藻占优势的湖泊水生生物。地球化学参数指示,青一段下部古湖泊生产力呈现3个低→高的旋回,对应的古湖泊水体盐度呈现为3个半咸水-咸水旋回、古湖泊水体氧化还原性表现为还原-强还原-还原的厌氧环境,其中旋回Ⅱ后期湖泊生产力最高,对应的水体盐度最高、还原性最强。表明湖泊富营养化造成的高湖泊生产力是青一段高品质油页岩有机质富集的物质基础,盐度分层控制下强还原的湖底环境是高品质油页岩有机质富集的良好保存条件。

关键词: 油页岩, 地球化学, 古湖泊学, 青一段, 松辽盆地

Abstract: The geochemical characteristics and paleolimnological information of oil shale are the key evidence to reveal the rule of metallogeny and enrichment of oil shale. Based on the analyses of TOC, oil yield, rock pyrolysis, element, biomarker compound,and organic maceral, geochemical characteristics of oil shale in the 1st Member of Qingshankou Formation in Well ZY1 in northern Songliao basin the were refinedly characterized, paleolimnological information recorded by the oil shale was analyzed, then the control effect of paleolake on organic matter enrichment of oil shale was discussed. The results show that there are 8 layers of medium-high quality oil shale in the 1st Member of Qingshankou Formation, and the high quality oil shale is mainly in the lower part. The TOC of oil shale has good correlation with the oil yield. Seen from the thermal evolution, the oil shale is in the immature-low mature stage with high hydrocarbon potential. Abundant steranes and terpanes are detected from the oil shale samples. The organic matter type of oil shale is mainly Ⅰ, and the main source of organic matter is lake aquatic organisms dominated by lamalginite. The paleolacustrine productivity of the lower part can be divided into three cycles by geochemical parameters, correspondingly the water salinity of paleolake shows three cycles from semi-saline to saline, and the redox property of paleo-lake shows reduction-strong reduction-reduction. And the paleolacustrine productivity of the late cycle Ⅱ is the highest, corresponding to the highest water salinity and the strongest reducibility. It is suggested that the high lake yield caused by lake eutrophication is the material basis of organic matter enrichment of high-quality oil shale in the 1st Member of Qingshankou Formation, and the strong reduction environment of bottom water controlled by salinity stratification is favorable for the accumulation of organic matter in high-quality oil shale.

Key words: oil shale, geochemical, paleolimnology, 1st Member of Qingshankou Formation, Songliao basin

中图分类号: 

  • P618.12
[1] 王慧中,梅洪明. 东营凹陷沙三下亚段油页岩中古湖泊学信息[J]. 同济大学学报(自然科学版),1998, 26(3):315-319. Wang Huizhong, Mei Hongming.Paleolimnological Information from the Oil Shale in the Lower Part of Sha3 Formation, in Dongying Depression[J]. Journal of Tongji University(Natural Sciences),1998, 26(3):315-319.
[2] 陈中红, 查明, 金强. 东营凹陷波动古湖相烃源岩沉积特征[J]. 湖泊科学, 2006, 18(1):29-35. Chen Zhonghong,Zha Ming,Jin Qiang. Sedimentary Charaeteristics of the Sourerocks in Fluctuation from Lake Facies:An Example from the Well Niu-38 in the Dongying Depression,China[J]. Journal of Lake Science, 2006, 18(1):29-35.
[3] 孟庆涛, 刘招君, 胡菲, 等. 桦甸盆地始新世古湖泊生产力与有机质富集机制[J]. 中国石油大学学报(自然科学版), 2012, 36(5):38-44. Meng Qingtao, Liu Zhaojun, Hu Fei, et al. Productivity of Eocene Ancient Lake and Enrichment Mechanismof Organic Matter in Huadian Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(5):38-44.
[4] 柳蓉. 东北地区东部新生代断陷盆地油页岩特征及成矿机制研究[D]. 长春:吉林大学, 2007. Liu Rong. Research on Oil Shale Characteristics and Metallogenic Mechanism of Cenozoic Fault Basins in Eastern Northeast Region[D]. Changchun:Jilin University, 2007.
[5] 王克兵. 柴北缘团鱼山地区中侏罗统石门沟组油页岩有机地球化学特征及成矿条件[D]. 长春:吉林大学, 2018. Wang Kebing. Organic Geochemistry Characteristics and Metallogenic Condition of Oilshale in Middle Jurassic Shimengou Formation in Tuanyushan Area,Northern Qaidam Basin, China[D]. Changchun:Jilin University, 2018.
[6] 贾建亮, 刘招君, Achim Bechtel, 等. 松辽盆地嫩江组油页岩发育控制因素[J]. 地球科学:中国地质大学学报, 2014, 39(2):174-186. Jia Jianliang, Liu Zhaojun, Achim B, et al. Major Factors Controlling Formation of Oil Shale in Nenjiang Formation of Songliao Basin[J]. Earth Science:Journal of China University of Geoscience, 2014, 39(2):174-186.
[7] 柳蓉, 刘招君, 杜江峰, 等. 依兰盆地始新统达连河组油页岩成因新认识[J]. 吉林大学学报(地球科学版), 2012, 42(4):941-947. Liu Rong, Liu Zhaojun, Du Jiangfeng, et al. New Research on Oil Shale Origin of Eocene Dalianhe Formation in Yilan Basin[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(4):941-947.
[8] 孙平昌. 松辽盆地东南部上白垩统含油页岩系有机质富集环境动力学[D]. 长春:吉林大学, 2013. Sun Pingchang. Environmental Dynamics of Organic Accumulation in the Oil Shale Bearing Layers in the Upper Cretaceous, Southeast Songliao Basin(NE China)[D]. Changchun:Jilin University, 2013.
[9] 刘招君, 孟庆涛, 贾建亮, 等. 陆相盆地油页岩成矿规律:以东北地区中、新生代典型盆地为例[J]. 吉林大学学报(地球科学版), 2012, 42(5):1285-1297. Liu Zhaojun, Meng Qingtao, Jia Jianliang, et al. Metallogenic Regularity of Oil Shale in Continental Basin:Case Study in the Meso-Cenozonic Basin of Northest China[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(5):1285-1297.
[10] 刘招君, 孟庆涛, 柳蓉, 等. 古湖泊学研究:以桦甸断陷盆地为例[J]. 沉积学报, 2010, 28(5):917-925. Liu Zhaojun, Meng Qingtao, Liu Rong, et al. Paleolimnology Study:Taking Huadian Fault Basin as an Example[J]. Acta Sedimentologica Sinica, 2010, 28(5):917-925.
[11] 刘招君, 杨虎林, 董清水, 等. 中国油页岩[M]. 北京:石油工业出版社, 2009. Liu Zhaojun, Yang Hulin, Dong Qingshui, et al. Oil Shale in China[M]. Beijing:Petroleum Industry Press, 2009.
[12] Feng Z Q,Jia C Z,Xie X N,et al. Tectonostratigraphic Units and Stratigraphic Sequences of the Nonmarine Songliao Basin,Northeast China[J]. Basin Research,2010,22:79-95.
[13] 贾建亮. 基于地球化学-地球物理的松辽盆地上白垩统油页岩识别与资源评价[D]. 长春:吉林大学, 2012. Jia Jianliang. Research on the Recognition and Resource Evaluation of the Upper Cretaceous Oil Shale Based on Geochemistry-Geophysics Technique in the Songliao Basin(NE, China)[D]. Changchun:Jilin University, 2012.
[14] 黄清华, 郑玉龙, 杨明杰, 等. 松辽盆地白垩纪古气候研究[J]. 微体古生物学报, 1999, 16(1):95-103. Huang Qinghua, Zheng Yulong, Yang Mingjie, et al. On Cretaceous Paleoclimate in the Songliao Basin[J].Acta Micropalaeontologica Sinica, 1999, 16(1):95-103.
[15] 尹秀珍. 松辽盆地中部晚白垩世早期古湖泊生产力研究[D]. 北京:中国地质大学(北京), 2008. Yin Xiuzhen. Palaeolacustrine Study of Early Late Cretaceous in the Central Area of Songliao Basin[D]. Beijing:China University of Geosciences (Beijing), 2008.
[16] Echtel A, Reischenbacher R D, Sachsenhoofer R F, et al. Paleogeography and Paleoecology of the Upper Miocene Zillingdorf Lignite Deposit(Austria)[J]. International Journal of Coal Geology, 2007, 69(3):119-143.
[17] 王春江, 傅家谟, 盛国英. 辽河西部凹陷古潜山原油及其源岩的分子碳同位素地球化学[J]. 地球化学, 2006, 35(1):68-80. Wang Chunjiang, Fu Jiamo, Sheng Guoying. Molecular Carbon Isotopic Geochemistry of Buried-Hill Oilsand Source Rocks of the West Liaohe Depression, China[J]. Geochimica, 2006, 35(1):68-80.
[18] Kleemann G, Poralla K, Englert G, et al. Tetrahymanol from the Phototrophic Bacterium Rhodopseudomonas Palustirs:First Report of a Gammacerane Triterpene from a Prokaryotes[J]. Journal of General Microbiology, 1990, 136:2551-2553.
[19] Hall P B, Douglas A G. The Distribution of Cyclic Alkanes in Two Lacustrine Deposits[C]//Advances in Organic Geochemistry. New York:J Wiley and Sons, 1981:576-587.
[20] Muller P J, Suess E. Productivity, Sedimentation Rate and Sedimentary Organic Matter in the Ocean:I:Organic Carbon Preservation[J]. Deep Sea Research, 1979, 26:1347-1362.
[21] Graninal L, Muller B, Wehrli B. Origin and Dynamics of Fe and Mn Sedimentary Layers in Lake Baikal[J].Chem Geol, 2004, 205:55-72.
[22] 张立平, 黄第藩, 廖志勤. 伽马蜡烷:水体分层的地球化学标志[J]. 沉积学报, 1999, 17(1):136-140. Zhang Liping, Huang Difan, Liao Zhiqin. Gammacerane:Geochemical Indicator of Water Column Stratification[J]. Acta Sedimentologica Sinica, 1999, 17(1):136-140.
[23] Sinninghe D, Kock-van J S,Dalen A C,et al. The Identification of Mono-,Di-,and Trimethyl 2-Methyl-2(4,8,12-Trimethyltridecyl) Chromans and Their Occurrence in Geosphere[J]. Geochimica et Cosmochimica Acta, 1987, 51(9):2393-2400.
[24] 邓宏文, 钱凯. 沉积地球化学与环境分析[M]. 兰州:甘肃科学技术出版社, 1993. Deng Hongwen, Qian Kai. Sedimentary Geochemistry and Environmental Analysis[M]. Lanzhou:Gansu Science and Technology Publishing House, 1993.
[25] 韩刚,张文婧,黄清华,等. 松辽盆地晚白垩世青山口组缺氧事件层的地质地球化学特征[J]. 现代地质,2012,4(26):741-746. Han Gang, Zhang Wenjing, Huang Qinghua, et al.Geological and Geochemical Characteristics of Anoxic Event Bed in the Qingshankou Formation of Late Cretaceous in Songliao Basin[J]. Geoscience, 2012,4(26):741-746.
[26] 梅博文, 刘希江. 我国原油中异戊间二烯烷烃的分布及其与地质环境的关系[J]. 石油与天然气地质, 1980, 1(2):99-115. Mei Bowen, Liu Xijiang. The Distribution of Isoprenoid Alkannes in China's Crude Oil and Its Relation with the Geologic Environment[J]. Oil and Gas Geology, 1980, 1(2):99-115.
[27] Hatch J R, Leventhal J S. Relationship Between Inferred Redoxpotential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A[J]. Chemical Geology, 1992, 99:65-82.
[1] 刘招君, 柳蓉, 孙平昌, 孟庆涛, 胡菲. 中国典型盆地油页岩特征及赋存规律[J]. 吉林大学学报(地球科学版), 2020, 50(2): 313-325.
[2] 王嗣敏, 臧东升, 王熙琼, 李杰, 韩嵩, 李建中. 辽西建昌盆地油页岩发育特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 326-340.
[3] 孟庆涛, 李金国, 刘招君, 胡菲, 徐川. 茂名盆地羊角含矿区始新统油柑窝组油页岩有机地球化学特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 356-367.
[4] 贾建亮, 刘招君, 孟庆涛, 孙平昌, 徐进军, 柳蓉, 白悦悦. 中国陆相油页岩含油率与总有机碳的响应机理[J]. 吉林大学学报(地球科学版), 2020, 50(2): 368-377.
[5] 宋宇, 刘招君, Achim Bechtel, 徐银波, 孟庆涛, 孙平昌, 朱凯. 老黑山盆地下白垩统穆棱组油页岩与煤含油率控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(2): 378-391.
[6] 和钟铧, 王启智, 王强. 大兴安岭索伦地区哲斯组碎屑岩地球化学特征和锆石U-Pb年龄对沉积物源属性约束[J]. 吉林大学学报(地球科学版), 2020, 50(2): 405-424.
[7] 张健, 张海华, 陈树旺, 郑月娟, 张德军, 苏飞, 黄欣. 松辽盆地北部上二叠统林西组地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 518-530.
[8] 陈会军, 于宏斌, 马永非, 陈井胜, 钱程, 刘世伟, 崔天日, 钟辉. 吉东南地区五女峰岩体锆石U-Pb年代学、岩石地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 531-541.
[9] 苗长盛, 徐文, 刘玉虎, 谢荣祥. 松辽盆地南部火山岩储层特征[J]. 吉林大学学报(地球科学版), 2020, 50(2): 635-643.
[10] 徐进军, 李宁, 金强, 刘吉华, 楼达, 滕建成. 黄骅坳陷石炭-二叠系凝析油气地球化学特征及来源分析[J]. 吉林大学学报(地球科学版), 2020, 50(2): 644-652.
[11] 张书义. 内蒙古新巴尔虎右旗塔木兰沟组火山岩年代学与地球化学特征[J]. 吉林大学学报(地球科学版), 2020, 50(1): 129-138.
[12] 许中杰, 孔锦涛, 程日辉, 李双林, 孔媛, 于振峰. 下扬子南京地区早寒武世幕府山组海平面相对升降的地球化学和碳、氧同位素记录[J]. 吉林大学学报(地球科学版), 2020, 50(1): 158-169.
[13] 张鹏辉, 张小博, 方慧, 王小江, 刘建勋. 地球物理资料揭示的嫩江—八里罕断裂中段深浅构造特征[J]. 吉林大学学报(地球科学版), 2020, 50(1): 261-272.
[14] 雷如雄, 赵同阳, 李平, 董连慧, 李基宏, 吴昌志. 北阿尔金地区大平沟金矿H-O-S-Pb同位素地球化学特征对金矿成因的启示[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1578-1590.
[15] 程龙, 丁清峰, 邓元良, 宋凯, 张强. 东昆仑五龙沟矿集区中三叠世辉绿岩脉的岩石成因:年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1628-1648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!