吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (6): 1703-1719.doi: 10.13278/j.cnki.jjuese.20190113

• 地质与资源 • 上一篇    

青海拉脊山东段白家藏侵入岩锆石U-Pb年代学、地球化学特征及其地质意义

张新远1,2, 李五福1,2, 王春涛1,2, 刘建栋1,2, 欧阳光文1,2   

  1. 1. 青海省青藏高原北部地质过程与矿产资源重点实验室, 西宁 810012;
    2. 青海省地质调查院, 西宁 810012
  • 收稿日期:2019-05-20 发布日期:2020-12-11
  • 通讯作者: 李五福(1982-),男,高级工程师,硕士,主要从事区域地质矿产调查研究,E-mail:15422504@qq.com E-mail:15422504@qq.com
  • 作者简介:张新远(1988-),男,工程师,硕士,主要从事区域地质矿产调查研究,E-mail:qhddyzxy@qq.com
  • 基金资助:
    国家科技部项目(2019QZKK0702);中国地质调查局项目(12120114041301,12120114079701,1212011221151)

Zircon U-Pb Dating, Geochemistry and Their Geological Significance of Baijiazang Pluton in Eastern Section of Lajishan in Qinghai Province

Zhang Xinyuan1,2, Li Wufu1,2, Wang Chuntao1,2, Liu Jiandong1,2, Ouyang Guangwen1,2   

  1. 1. Qinghai Provincial Key Laboratory of Geological Processes and Mineral Resources of Northern Qinghai-Tibetan Plateau, Xining 810012, China;
    2. Qinghai Geological Survey Institute, Xining 810012, China
  • Received:2019-05-20 Published:2020-12-11
  • Supported by:
    Supported by the Program of Ministry Science and Technology of China (2019QZKK0702) and Project of China Geolo-gical Survey (12120114041301,12120114079701,1212011221151)

摘要: 白家藏侵入岩位于青海省民和县,大地构造位置上处于拉脊山蛇绿混杂岩带东段。通过岩石学、同位素年代学和岩石地球化学方法,对白家藏侵入岩进行了研究,以确定其侵位时代并探讨大地构造环境。结果表明,白家藏侵入岩主要由闪长岩和石英闪长岩组成,分别在闪长岩和石英闪长岩中获得锆石U-Pb年龄为(472.5±1.9)Ma和(467.3±2.5)Ma,二者在误差范围内一致,据此判断白家藏侵入岩的侵位年龄约470 Ma,为中奥陶世。地球化学特征显示:岩体w(SiO2)为55.67%~59.04%,Na2O/K2O值为3.35~6.14,且w(Na2O)高于w(K2O),显示富钠、贫钾特征;A/CNK值主体介于0.76~1.01之间,属于准铝质钙碱性系列岩石;稀土配分曲线呈轻稀土元素相对弱富集((La/Yb)N=2.51~4.57),轻、重稀土元素内部分馏较弱的微右倾型曲线;岩石明显富集大离子亲石元素Rb、Ba和活泼的不相容元素Th、U,相对亏损高场强元素Nb、Ta、P、Ti等;环境判别显示具岛弧花岗岩特征。以上特征表明白家藏侵入岩为拉脊山洋俯冲阶段的产物。

关键词: 地球化学, 锆石U-Pb年龄, 岩石成因, 俯冲环境, 中奥陶世, 拉脊山

Abstract: The intrusive rocks of Baijiazang is located in Minhe County, Qinghai Province, and the geotectonic position is located in the eastern section of Lajishan ophiolis melange belt. Through petrology, petrogeochemistry and isotopic chronology, the intrusive rocks of Baijiazang have been studied in order to determine their time of emplacement and to explore the tectonic environment. The results show that the intrusive rocks in Baijiazang are mainly composed of diorite and quartz diorite. Zircon U-Pb age obtained from diorite and quartz diorite is (472.5±1.9) Ma and (467.3±2.5) Ma, respectively, and they are consistent within the error range. Therefore, it can be judged that the emplacement age of Baijiazang rock is about 470 Ma, which is Middle Ordovician. The geochemical characteristics show that the SiO2 content of the rock mass is 55.67%-59.04%. The value of Na2O/K2O was 3.35-6.14, and w (Na2O) was higher than of w (K2O), showing the characteristics of rich in sodium and poor in potassium. The main body of A/CNK value is between 0.76 and 1.01, belonging to the quasi-aluminum calc-alkaline series rocks. The rare earth partition curve presented a slightly right-leaning curve, where light rare earth elements were relatively weakly enriched ((La/Yb)N=2.51-4.57), and light and heavy rare earth elements were weakly fractionated internally. The rocks were obviously enriched with large ion lipophilic elements Rb, Ba and active incompatible elements Th and U, while relatively deficient with high-field strength elements Nb, Ta, P, Ti, etc. Environmental discrimination shows that it has the characteristics of island-arc granite. The above characteristics indicate that the intrusive rocks in Baijiazang were produced at the subduction stage of the Lajishan ocean.

Key words: geochemistry, zircon U-Pb age, petrogenesis, subduction, Middle Ordovician, Lajishan

中图分类号: 

  • P588.12
[1] 张国伟, 柳小明. 关于"中央造山带"几个问题的思考[J]. 地球科学:中国地质大学学报, 1998, 23(5):9-14. Zhang Guowei, Liu Xiaoming. Some Remarks of China Central Orogenic System[J]. Earth Science:Journal of China University of Geosciences, 1998, 23(5):9-14.
[2] 杨贺. 中祁连东段早古生代岩浆侵入作用及其深部过程[D]. 北京:中国地质大学(北京), 2016:1-154. Yang He. Early Paleozoic Intrusive Magmatism and Geodynamic Processes in the Eastern Segment of the Central Qilian[D]. Beijing:China University of Geosciences(Beijing), 2016:1-154.
[3] Xiao W, Windley B F, Yong Y, et al. Early Paleozoic to Devonian Multiple-Accretionary Model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 2009, 35(3/4):323-333.
[4] 冯益民, 曹宣铎, 张二朋, 等. 西秦岭造山带结构造山过程及动力学[C]//中国地质学会. "九五"全国地质科技重要成果论文集.北京:中国地质学会, 2000:99-103. Feng Yimin, Cao Xuanduo, Zhang Erpeng, et al. Structural Orogeny Process and Dynamics of the West Qinling Orogenic Belt[C]//China Geological Society. Proceedings of the National Geological Science and Technology Important Achievements in the Ninth Five-Year Plan. Beijing:China Geological Society, 2000:99-103.
[5] 肖序常, 陈国铭, 朱志直. 祁连山古蛇绿岩带的地质构造意义[J]. 地质学报, 1978, 52(4):31-88. Xiao Xuchang, Chen Guoming, Zhu Zhizhi. Geological and Tectonic Significance of Paleo-Ophiolite Belt in Qilian Mountains[J]. Acta Geological Sinica, 1978, 52(4):31-88.
[6] 张建新, 许志琴, 陈文, 等. 北祁连中段俯冲-增生杂岩/火山弧的时代探讨[J]. 岩石矿物学杂志, 1997, 16(2):112-119. Zhang Jianxin, Xu Zhiqin, Chen Wen, et al. A Tentative Discussion on the Ages of the Subduction-Accretionary Comliex/Volcanic Arcs in the Middle Sector of North Qilian Mountain[J]. Acta Petrologica et Mineralogica, 1997, 16(2):112-119.
[7] 左国朝, 张淑玲, 程建生, 等. 祁连地区蛇绿岩带划分及其构造意义[C]//蛇绿岩与地球动力学研讨会论文集. 北京:中国地质学会, 1996:138-143. Zuo Guochao, Zhang Shuling, Cheng Jiansheng, et al. Divesion of Ophiolite Zones and Their Tectonic Significance in Qilian Area[C]//Proceedings of the Symposium on Ophiolites and Geodynamics. Beijing:China Geological Society, 1996:138-143.
[8] 曾广策, 邱家骧, 朱云海. 拉鸡山造山带的蛇绿岩套及古构造环境[J]. 青海地质, 1997(1):1-6. Zeng Guangce, Qiu Jiaxiang, Zhu Yunhai. Ophiolitic Suite of Lajishan Orogenic Belt and Its Paleotectonic Setting[J]. Qinghai Geology, 1997(1):1-6.
[9] 王二七, 张旗, Burchfiel C B. 青海拉鸡山:一个多阶段抬升的构造窗[J]. 地质科学, 2000, 35(4):493-500. Wang Erqi, Zhang Qi, Burchfiel C B. The Lajishan Fault Belt in Qinghai Province:A Multi-Staged Uplifting Structural Window[J]. Chinese Journal of Geology, 2000, 35(4):493-500.
[10] Xiao W, Windley B F, Yong Y, et al. Early Paleozoic to Devonian Multiple-Accretionary Model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 2009, 35(3/4):323-333.
[11] Fu C L, Yan Z, Guo X Q, et al. Geochemistry and SHRIMP Zircon U-Pb Age of Diabases in the Lajishankou Ophiolitic Mélange, South Qilian Terrane[J]. Acta Petrologica Sinica, 2014, 30(6):1695-1706.
[12] Wang T, Wang Z, Yan Z, et al. Geochronological and Geochemical Evidence of Amphibolite from the Hualong Group, Northwest China:Implication for the Early Paleozoic Accretionary Tectonics of the Central Qilian Belt[J]. Lithos, 2016, 248/249/250/251:12-21.
[13] 闫臻, 王宗起, 李继亮, 等. 西秦岭楔的构造属性及其增生造山过程[J]. 岩石学报, 2012, 28(6):1808-1828. Yan Zhen, Wang Zongqi, Li Jiliang, et al. Tectonic Settings and Accretionary Orogenesis of the West Qinling Terrane, Northeastern Margin of the Tibet Plateau[J]. Acta Petrologica Sinica, 2012, 28(6):1808-1828.
[14] 王涛, 马振慧, 王宗起, 等. 中祁连拉脊山早古生代沉积岩源区和时代限定[J]. 地质学报, 2016, 90(9):2316-2333. Wang Tao, Ma Zhenhui, Wang Zongqi, et al. Constraints of the Provenance and Deposition Time of the Early Paleozoic Sedimentary Rocks in the Lajishan Area, Central Qilian[J]. Acta Geologica Sinica, 2016, 90(9):2316-2333.
[15] 左国朝, 李志林, 张崇. 青海拉鸡山构造带是裂谷还是构造窗:与王二七研究员商榷[J]. 地质论评, 2001, 47(6):561-566. Zuo Guochao, Li Zhilin, Zhang Chong. Lajishan Tectonic Zone of Qinghai Province:Rift or Tectonic Window:To Discuss with Prof Wang Erqi[J]. Geological Review, 2001, 47(6):561-566.
[16] 钟林汐. 青海拉脊山中酸性侵入岩的地球化学特征、成岩时代及构造意义[D]. 北京:中国地质大学(北京), 2015:1-77. Zhong Linxi. Geochemical Characteristics, Diagenetic Ages and Tectonic Significances of the Intermediate-Felsic Intrusive Rocks in Qinghai Lajishan Mountains[D]. Beijing:China University of Geosciences(Beijing), 2015:1-77.
[17] Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-Incduced Melt-Peridoite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Element in Zircon from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571.
[18] Ludwig K R. Isoplot/Ex Version 2.49, a Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center Special Publication, 2003:1-56.
[19] 张新远,王春涛,欧阳光文,等.南祁连敖果吞乌兰侵入岩锆石U-Pb年龄及其地质意义[J]. 地球科学与环境学报, 2018, 40(5):546-562. Zhang Xinyuan, Wang Chuntao, Ouyang Guangwen, et al. Zircon U-Pb Ages and Their Geological Significance of Aoguotunwulan Pluton in South Qilian, China[J]. Journal of Earth Sciences and Environment, 2018, 40(5):546-562.
[20] Vavra G, Gebauer D, Schmid R. Multiple Zircon Growth and Recrystallization During Polyphase Late Carboniferous to Triassic Metamorphism in Granulites of the Ivrea Zone(Southern Alps):An Ion Microprobe(SHRIMP) Study[J]. Contributions to Mineralogy and Petrology, 1996, 122(4):337-358.
[21] Vavra G, Schmid R, Gebauer D. Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibole to Granulite Facies Zircon:Geochronology of the Ivren Zone (Southern Alps)[J]. Contributions to Mineralogy and Petrology, 1999, 134(4):380-404.
[22] 闫义, 林舸, 李自安. 利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究[J]. 大地构造与成矿学, 2003, 27(2):184-190. Yan Yi, Lin Ge, Li Zi'an. Provenance Tracing of Sediments by Means of Synthetic Study of Shape, Composition and Chronology of Zircon[J]. Geotectonica et Metallogenia, 2003, 27(2):184-190.
[23] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16):1589-1604. Wu Yuanbao, Zhen Yongfei. Zircon Mineralogy and Its Constraints on Interpretion of U-Pb Age[J]. Chinese Science Bulletin, 2004, 49(16):1589-1604.
[24] Rubatto D. Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link Between U-Pb Ages and Metamorphism[J]. Chemical Geology, 2002, 184(1/2):123-138.
[25] Koschek G. Origin and Significance of the SEM Cathodluminescence from Zircon[J]. Journal of Microscopy, 1993, 171(3):223-232.
[26] 张永明, 裴先治, 李佐臣, 等. 青海南山当家寺花岗岩体锆石U-Pb年代学、地球化学及其地质意义[J]. 地质学报, 2017, 91(3):523-541. Zhang Yongming, Pei Xianzhi, Li Zuochen, et al. LA-ICP-MS Zircon U-Pb Dating and Geochemistry of the Dangjiasi Granitic Complex in the Qinghai Nanshan Tectonic Zone, and Its Geological Implications[J]. Acta Geologica Sinica, 2017, 91(3):523-541.
[27] Irvine T N, Baragar W R A. A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5):523-548.
[28] Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1):63-81.
[29] Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643.
[30] Boynton W V. Cosmochemistry of the Rare Earth Elements Meteoric Studies[J]. Developments in Geochemistry, 1984, 2(2):63-114.
[31] 李碧乐, 孙丰月, 于晓飞, 等. 东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究[J]. 岩石学报, 2012, 28(4):1163-1172. Li Bile, Sun Fengyue, Yu Xiaofei,et al. U-Pb Dating and Geochemistry of Diorite in the Eastern Section from Eastern Kunlun Middle Uplifted Basement and Granitic Belt[J]. Acta Petrologica Sinica, 2012, 28(4):1163-1172.
[32] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts; Implications for Mantle Composition and Processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. London:Geological Society Special Publications, 1989:313-345.
[33] 南卡俄吾, 贾群子, 李文渊, 等. 青海东昆仑哈西亚图铁多金属矿区石英闪长岩LA-ICP-MS锆石U-Pb年龄和岩石地球化学特征[J]. 地质通报, 2014, 33(6):841-849. Namkha Norbu, Jia Qunzi, Li Wenyuan, et al. LA-ICP-MS Zircon U-Pb Age and Geochemical Characteristics of Quartz Diorite from the Haxiyatu Iron-Polymetallic Ore District in Eastern Kunlun[J]. Geological Bulletin of China, 2014, 33(6):841-849.
[34] 施璐, 唐振, 郑常青, 等. 大兴安岭中部柴河地区晚侏罗世花岗质岩石成因及构造意义[J]. 吉林大学学报(地球科学版), 2020, 50(1):112-128. Shi Lu, Tang Zhen, Zheng Changqing, et al. Genesis and Tectonic Significance of Late Jurassic Granitoids in Chaihe Region, Central Great Xing'an Range, NE China[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(1):112-128.
[35] Green T H. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System[J]. Chemical Geology, 1995, 120(3/4):347-359.
[36] Taylor S R, Mclennan S M. The Geochemical Evolution of the Continental Crust[J]. Reviews of Geophysics, 1995, 33(2):241-265.
[37] Arnaud N O, Vidal P, Tapponnier P, et al. The High K2O Volcanism of Northwestern Tibet:Geochemistry and Tectonic Implications[J]. Earth & Planetary Science Letters, 1992, 111(2/3/4):351-367.
[38] Thompson, Bruce A. Fertility of Crustal Rocks During Anataxis[J]. Transactions of Royal Society of Edinburgh:Earth Science, 1996, 87(1/2):1-10.
[39] Wang Yuejun, Fan Weiming, Guo Feng. Geochemistry of Early Mesozoic Potassium-Rich Diorites-Granodiorites in Southeastern Hunan Province, South China:Petrogenesis and Tectonic Implications[J]. Geochemical Journal, 2003, 37(4):427-448.
[40] 邱婵媛, 肖倩茹, 魏永峰, 等.冈底斯带西北缘别若则错地区晚白垩世闪长岩LA-ICP-MS锆石U-Pb测年、地球化学及地质意义[J]. 地质学报, 2018, 92(11):2215-2226. Qiu Chanyuan, Xiao Qianru, Wei Yongfeng, et al. LA-ICP-MS Zircon U-Pb Dating and Geochemical Analysis of the Late Cretaceous Diorite in the Bieruozecuo Area, Northwestern Margin of the Gangdise Belt, Tibet, and Their Geological Significances[J]. Acta Geologica Sinica, 2018, 92(11):2215-2226.
[41] 张希兵, 杨富全, 刘锋, 等. 东准噶尔北缘托斯巴斯套闪长岩体地球化学特征及成因[J]. 新疆地质, 2011, 29(2):119-124. Zhang Xibing, Yang Fuquan, Liu Feng, et al. Geochemistry and Genesis of the Tuosibasitao Diorites in the District of Laoshankou Ironcopper Deposit at the Northern Margin of East Junggar, Xinjiang[J].Xinjiang Geology, 2011, 29(2):119-124.
[42] Barbarin B. A Review of the Relationship Between Granitoid Types, Their Origins and Their Geodynamic Environments[J]. Lithos, 1999, 46(3):605-626.
[43] 肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法[M].北京:地质出版社, 2002:12-20. Xiao Qinghui, Deng Jinfu, Ma Dashuan, et al. The Ways of Investigation on Granitoids[M]:Beijing:Geological Publishing House, 2002:12-20.
[44] Barth M G, McDonough W F, Rudnick R L. Tracking the Budget of Nb and Ta in the Continental Crust[J]. Chemical Geology, 2000, 165(3/4):197-213.
[45] Pfänder J A, Münker C, Stracke A, et al. Nb/Ta and Zr/Hf in Ocean Island Basalts-Implications for Crust-Mantle Differentiation and the Fate of Niobium[J]. Earth and Planetary Science Letters, 2007, 254(1/2):158-172.
[46] Bea F, Arzamastsev A,Montero P, et al. Anomalous Alkaline Rocks of Soustov, Kola:Evidence of Mantle-Derived Metasomatic Fluids Affecting Crustal Materials[J]. Contributions to Mineralogy and Petrology, 2001, 140(5):554-566.
[47] Wedepohl K H. The Composition of the Continental Crust[J]. Geochimica et Cosmochimica Acta, 1995, 59(7):1217-1232.
[48] 张遵忠, 顾连兴, 吴昌志, 等. 中天山东段尾亚印支早-中期石英闪长岩:陆内俯冲与原生下陆壳部分熔融[J]. 地质学报, 2011, 85(9):1420-1434. Zhang Zunzhong, Gu Lianxing, Wu Changzhi, et al. Early-Middle Indosinian Weiya Quartz Diorite, Eastern Segment of the Middle Tianshan Mountains, NW China:Implications for Intra-Continent Subduction and Partial Melting of Juvenile Lower Crust[J]. Acta Geologica Sinica, 2001, 85(9):1420-1434.
[49] Wolf M B, Wyllie P J. Dehyddration-Melting of Amphibolite at 10 kbar:The Effects of Temperature and Time[J]. Contributions to Mineralogy and Petrology, 1994, 115(4):369-383.
[50] Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8~32 kbar:Implication for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 1995, 36(4):891-931.
[51] Rapp R P. Amphibole-Out Phase Boundary in Partially Melted Metabasalt, Its Control Over Liquid Fraction and Composition, and Source Permeability[J]. Journal of Geophysical Research, 1995, 100(B8):15601-15610.
[52] Zorpi M J, Coulon C, Orsini J B. Hybridization Between Felsic and Mafic Magmas in Calc-Alkaline Granitoids:A Case Study in Northern Sardinia, Italy[J]. Chemical Geology, 1991, 92(1/2/3):45-86.
[53] 李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段古特提斯洋俯冲作用:乌妥花岗岩体锆石U-Pb年代学和地球化学证据[J]. 岩石学报, 2018, 34(11):3399-3421. Li Ruibao, Pei Xianzhi, Li Zuochen, et al. Paleo-Tethys Ocean Subduction in Eastern Section of East Kunlun Orogen:Evidence from the Geochronology and Geochemistry of the Wutuo Pluton[J]. Acta Petrologica Sinica, 2018, 34(11):3399-3421.
[54] Allègre C J, Minster J F. Quantitative Models of Trace Element Behavior in Magmatic Processes[J]. Earth and Planetary Science Letters, 1978, 38(1):1-25.
[55] Martin H. Adakitic Magmas:Modern Analogues of Archaean Granitoids[J]. Lithos, 1999, 46(3):411-429.
[56] 张永明. 青海南山构造带印支期构造岩浆作用与区域构造演化[D]. 西安:长安大学, 2015:1-169. Zhang Yongming. Indosinian Tectonic-Magmatism and Regional Tectonic Evolution in the Qinghainanshan Tectonic Belt[D].Xi'an:Chang'an University, 2015:1-169.
[57] Pearce J A. Trace Element Characteristics of Lave from Destructive Plate Boundaries[C]//Orogenic Andesites and Related Rocks. Chichester, England:John Wiley & Sons, 1982:525-548.
[58] Hou Z Q, Gao Y F, Qu X M, et al. Qrigin of Adakitic Intrusives Generated During Mid-Miocene Eastwest Extension in Southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220(1/2):139-155.
[59] Pearce T H, Gorman B E, Birkett T C.The Relationship Between Major Element Chemistry and Tectonic Environment of Basic and Intermediate Volcanic Rocks[J]. Earth and Planetary Science Letters, 1977, 36(1):121-132.
[60] 邓晋福, 肖庆辉, 苏尚国, 等. 火成岩组合与构造环境:讨论[J]. 高校地质学报, 2007, 13(3):392-402. Deng Jinfu, Xiao Qinghui, Su Shangguo, et al. Igneous Petrotectonic Assemblages and Tectonic Setting:A Discussion[J]. Geological Journal of China Universities, 2007, 13(3):392-402.
[61] 冯艳芳, 邓晋福, 肖庆辉, 等. TTG岩类的识别:讨论与建议[J]. 高校地质学报, 2011, 17(3):406-414. Feng Yanfang, Deng Jinfu, Xiao Qinghui, et al. Recognizing the TTG Rock Types:Discussion and Suggestion[J]. Geological Journal of China Universities, 2011, 17(3):406-414.
[62] 邓晋福, 刘翠, 冯艳芳, 等. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类[J]. 中国地质, 2010, 37(4):1112-1118. Deng Jinfu, Liu Cui, Feng Yanfang, et al. High Magnesian Andesitic/Dioritic Rocks(HMA) and Magnesian Andesitic/Dioritic Rocks(MA):Two Igneous Rock Types Related to Oceanic Subduction[J]. Geology in China, 2010, 37(4):1112-1118.
[63] 冯艳芳, 邓晋福, 王世进, 等. 鲁西地区早前寒武纪花岗岩类中镁安山质岩石系列(MA)的识别及大陆地壳生长[J]. 中国地质, 2010, 37(4):1119-1129. Feng Yanfang, Deng Jinfu, Wang Shijin, et al. The Recognition of the Magnesian Andesitic Series(MA) in the Precambrian Granitic Rocks in Western Shandong Province and the Continental Crustal Growth[J]. Geology in China, 2010, 37(4):1119-1129.
[1] 明添学, 杨清标, 李蓉, 唐忠, 薛戈, 罗建宏, 余海军, 李永平. 滇西加里东期平河复式花岗岩体锆石U-Pb年龄、Hf同位素特征及其风化壳型稀土矿成矿认识[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1685-1702.
[2] 孙海瑞, 吕志成, 于晓飞, 李永胜, 杜泽忠, 吕鑫, 公凡影. 甘肃柳园地区早二叠世正长花岗斑岩脉锆石U-Pb年代学、岩石地球化学特征——对北山造山带晚古生代构造背景的指示[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1433-1449.
[3] 贺根文, 路思明, 彭琳琳, 于长琦, 李伟, 刘翠辉. 赣南狮吼山硫铁多金属矿区花岗岩地球化学、年代学特征及其成因[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1491-1504.
[4] 赵亚云, 刘晓峰, 刘远超, 次琼, 郑常云, 杨春四, 李莉, 付海龙. 西藏昂仁县多仁则—桑阿卡地区铜多金属矿点含矿岩体成因及成矿意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1323-1339.
[5] 余振东, 项新葵, 谭荣, 孙德明, 张斯. 赣北大湖塘平苗矿段白云母花岗岩锆石U-Pb年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1505-1517.
[6] 范媛媛, 刘云华, 于晓飞, 赵强, 李小严, 邓楠, 马塬皓. 甘肃武都金坑子金矿床地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1404-1417.
[7] 熊光强, 刘敏, 张达, 王忠. 内蒙古西乌旗迪彦庙蛇绿岩带内辉长岩地球化学及年代学[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1599-1614.
[8] 余长胜, 杨言辰, 韩世炯, 杨昆林, 宋朝阳, 张易航, 王旺. 大兴安岭下嘎来奥伊铅锌矿床钾长花岗岩的岩石成因及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1042-1058.
[9] 任文恺, 王生云, 陈礼标, 吴少锋, 张海青. 青海同仁兰采地区花岗闪长岩LA-ICP-MS锆石U-Pb年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1059-1074.
[10] 任云生, 刘小禾, 商青青, 陈聪, 杨群, 郝宇杰, 孙振明. 吉林省和龙地区鸡南BIF型铁矿床含矿建造地球化学特征及形成时代[J]. 吉林大学学报(地球科学版), 2020, 50(3): 800-814.
[11] 王德远, 续海金, 王攀, 贾敏, 高占冬. 大陆造山带深熔垮塌的岩石学、地球化学证据:以北大别深熔混合岩为例[J]. 吉林大学学报(地球科学版), 2020, 50(3): 675-693.
[12] 张健, 张海华, 陈树旺, 郑月娟, 张德军, 苏飞, 黄欣. 松辽盆地北部上二叠统林西组地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 518-530.
[13] 陈会军, 于宏斌, 马永非, 陈井胜, 钱程, 刘世伟, 崔天日, 钟辉. 吉东南地区五女峰岩体锆石U-Pb年代学、岩石地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 531-541.
[14] 宋宇, 刘招君, Achim Bechtel, 徐银波, 孟庆涛, 孙平昌, 朱凯. 老黑山盆地下白垩统穆棱组油页岩与煤含油率控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(2): 378-391.
[15] 孟庆涛, 李金国, 刘招君, 胡菲, 徐川. 茂名盆地羊角含矿区始新统油柑窝组油页岩有机地球化学特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 356-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!