吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (2): 516-525.doi: 10.13278/j.cnki.jjuese.20200179

• 地质工程与环境工程 • 上一篇    

基于统计方法评价沁水盆地南部煤层气开采对地下水环境的影响

骆奕杉1, 李兆2   

  1. 1. 江苏省地质矿产局第一地质大队, 南京 210041;
    2. 河海大学地球科学与工程学院, 南京 210098
  • 收稿日期:2020-08-04 发布日期:2021-04-06
  • 通讯作者: 李兆(1990-),男,博士研究生,主要从事水文地质与环境地质方面的研究,E-mail:lizhao199057@163.com E-mail:lizhao199057@163.com
  • 作者简介:骆奕杉(1991-),女,硕士,主要从事统计学及其应用方面的研究,E-mail:709476538@qq.com
  • 基金资助:
    国家自然科学基金项目(41730749);沁水县能源局项目(SXYXTZB-2018-180)

Statistical Evaluation of Impact of Coalbed Methane Exploitation on Groundwater Environment in Qinshui Basin

Luo Yishan1, Li Zhao2   

  1. 1. The 1st Geological Brigade of Jiangsu Geology&Exploration Bureau, Nanjing 210041, China;
    2. School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
  • Received:2020-08-04 Published:2021-04-06
  • Supported by:
    Supported by the National Natural Science Foundation of China(41730749) and the Project of the Energy Bureau of Qinshui County(SXYXTZB-2018-180)

摘要: 针对沁水盆地煤层气开采对地下水环境的影响问题,基于统计学方法对采集的129件水样进行分析,系统评价了地下水与煤层气排采水之间的关系。Piper三线图对各含水层地下水和煤层气排采水水化学特征的分析表明,沁水盆地区域地下水常见离子以HCO3-、SO42-、Ca2+、Mg2+为主,煤层气排采水水化学类型以HCO3-、Cl-、Na+为主,与地下水水化学类型差异大。箱式图结果表明:煤层气排采水中F-平均质量浓度远高于区域地下水中的,可选取F-作为煤层气排采水的示踪剂;沁水盆地未出现地下水F-质量浓度大范围升高现象,仅柿庄区块南部水样(1027-4、1027-5)和郑庄区块(1030-3)东南部水样地下水出现高F-质量浓度。通过聚类分析评价地下水和煤层气排采水之间的F-质量浓度关系,结果显示:柿庄区块南部煤层气排采水F-质量浓度与Na+、HCO3-、Fe3+质量浓度相关性好,水样1027-4同时出现Na+、HCO3-、Fe3+偏高现象;郑庄区块东南部煤层气排采水F-与NO3-质量浓度相关性好,但1030-3未出现NO3-质量浓度偏高现象。结果表明:沁水盆地煤层气开采未造成大范围地下水污染,但柿庄区块南部局部地区浅层地下水混入煤层气排采水。

关键词: 煤层气, 地下水环境, 统计学, 聚类分析

Abstract: Aiming at the impact of coalbed methane (CBM) exploitation on groundwater environment in Qinshui basin, a total of 129 water samples were collected and analyzed by statistical methods, and the relationship between groundwater and CBM co-produced water was systematically evaluated. The hydrochemistry characteristics were analyzed by Piper diagram. The main ions of groundwater are HCO3-, SO42-, Ca2+, and Mg2+, and those of the CBM co-produced water are HCO3-, Cl-, and Na+. The types of hydrochemical characteristics of groundwater and CBM co-produced water are quite different. The average concentration of F-in CBM co-produced water is higher than that in groundwater, so F-could be treated as a tracer of CBM co-produced water. The concentration of F-in groundwater did not increase in regional, however, the water samples from Shizhuang block South (1027-4, 1027-5) and Zhengzhuang block Southeast (1030-3) showed high F-. The relationship of F- from CBM co-produced water and groundwater was analyzed by cluster analysis. The cluster analysis results show that F- from CBM co-produced water in Shizhuang block South has a good correlation with Na+, HCO3-, and Fe3+, and the concentration of Na+, HCO3-, and Fe3+ from 1027-4 is higher than that in the surrounding area. F- from CBM co-produced water in Zhengzhuang block Southeast has a good correlation with NO3-, however, the concentration of NO3- from 1030-3 is not higher than the surrounding value. It is shown that CBM exploitation does pollute the groundwater in regional, while in the Shizhuang block, the shallow groundwater is polluted by CBM co-produced water.

Key words: coalbed methane, groundwater environment, statistics, cluster analysis

中图分类号: 

  • P641
[1] 刘客, 郑凯, 洪强. 中国煤层气产业政策回顾与评价[J]. 经济研究参考, 2015(19):32-40. Liu Ke, Zheng Kai, Hong Qiang. Review and Evaluation of China's CBM Industry Policy[J]. Review of Economic Research, 2015(19):32-40.
[2] Orem W H, Tatu C A, Lerch H E, et al. Organic Compounds in Produced Waters from Coalbed Natural Gas Wells in the Powder River Basin, Wyoming, USA[J]. Applied Geochemistry, 2007, 22(10):2240-2256.
[3] Burkhardt A, Gawde A, Cantrell C L, et al. Effects of Produced Water on Soil Characteristics, Plant Biomass, and Secondary Metabolites[J]. Journal of Environmental Quality, 2015, 44(6):1938-1947.
[4] 李建飞. 煤层气和页岩气开发对水资源影响的对比分析[J]. 煤炭经济研究, 2019, 39(12):71-75. Li Jianfei. Comparative Analysis of the Impact of Coalbed Methean and Shale Gas Development on Water Resources[J]. Coal Economic Research, 2019, 39(12):71-75.
[5] 帅官印,张永波,张志祥,等.煤层气开采对地下水环境影响研究现状[J].环境工程,2018,36(增刊):1-12. Shuai Guanyin, Zhang Yongbo, Zhang Zhixiang, et al. Research Status of Groundwater Environmental Impact in Coalbed Methane Production[J]. Environmental Engineering,2018,36(Sup.):1-12.
[6] 柏杨, 陈鹏. 煤层气采出水对大佛寺井区地下水水质的影响研究[J]. 化工技术与开发, 2019, 48(7):20-24. Bai Yang, Chen Peng. Influence of Produced Water on Groundwater Quality in Dafosi Well Area[J]. Technology & Development of Chemical Industry, 2019, 48(7):20-24.
[7] Wang Z R, Tian X, Wu X. Hydrochemical Characteristics and Quality Assessment of Shallow Groundwater and CBM Co-Produced Water in the Shizhuangnan Block, Qinshui Basin, China[J]. Environmental Earth Sciences, 2018, 77(3):57.
[8] 陈晶,黄文辉,陈燕萍,等.沁水盆地煤系地层页岩储层评价及其影响因素[J].煤炭学报,2017,42(增刊1):215-224. Chen Jing, Huang Wenhui, Chen Yanping, et al. Evaluation of Shale Reservoir and Its Influencing Factors in Coal-Bearing Strata of Qinshui Basin[J]. Journal of China Coal Society,2017,42(Sup.1):215-224.
[9] 张松航, 唐书恒, 李忠城,等. 煤层气井产出水化学特征及变化规律:以沁水盆地柿庄南区块为例[J]. 中国矿业大学学报, 2015, 44(2):292-299. Zhang Songhang, Tang Shuheng, Li Zhongcheng, et al. the Hydrochemical Characteristics and Ion Changes of the Co-Produced Water:Taking Shizhuangnan Block, South of the Qinshui Basin as an Example[J]. Journal of China University of Mining & Technology, 2015, 44(2):292-299.
[10] 田敏. 煤层气资源量预测中的灰色系统理论研究[D].青岛:中国石油大学,2008. Tian Min. Study on the Gray System Theory in the Prediction of Coalbed Methean Resources[D].Qingdao:China University of Petroleum, 2008.
[11] 骆祖江.沁水盆地3#煤层气井三维数值模拟[J].吉林大学学报(地球科学版),2003,33(4):509-513. Luo Zujiang. Three Dimensional Numerical Simulation of 3# Coal Bed Methane Well in Qinshui Basin[J]. Journal of Jilin University (Earth Science Edition),2003,33(4):509-513.
[12] 张伟. 晋城无烟煤矿业集团赵庄电厂对地下水水质影响的数值模拟研究[D].太原:太原理工大学,2012. Zhang Wei. Numerical Simulation of Jincheng Anthracite Mining Group Zhaozhuang Power Plant Impact on Groundwater Quality[D]. Taiyuan:Taiyuan University of Technology,2012.
[13] 孙永河, 张梦迪.基于R型聚类的层次型DEMATEL分析方法[J].数学的实践与认识,2019,49(6):42-51. Sun Yonghe, Zhang Mengdi.DEMATEL Decision Method Based on R-Clusting[J]. Mathematics in Practice and Theory,2019,49(6):42-51.
[14] 卢冶飞,孙忠宝. 应用统计学[M]. 北京:清华大学出版社, 2012. Lu Yefei, Sun Zhongbao. Applied Statistics[M]. Beijing:Tsinghua University Press, 2012.
[15] 刘绍平, 汤军, 许晓宏. 数学地质方法及应用[M]. 北京:石油工业出版社, 2011. Liu Shaoping, Tang Jun, Xu Xiaohong. The Methods and Applications on Mathematical Geology[M]. Beijing:Petroleum Industry Press, 2011.
[16] 煤矿床水文地质、工程地质及环境地质勘查评价标准:MT/T 1091-2008[S]. 北京:煤炭工业出版社,2008. Standard for Exploration and Evaluation of Hydrogeology, Engineering Geology and Environment Geology in Coal Beds:MT/T 1091-2008[S]. Beijing:China Coal Industry Publishing House, 2008.
[17] 张人权, 梁杏, 靳孟贵,等. 水文地质学基础[M]. 7版.北京:地质出版社, 2018. Zhang Renquan, Liang Xing, Jin Menggui, et al. Fundamentals of Hydrology[M]. 7th ed. Beijing:Geological Publishing House, 2018.
[18] 董维红,孟莹,王雨山,等.三江平原富锦地区浅层地下水水化学特征及其形成作用[J].吉林大学学报(地球科学版),2017,47(2):542-553. Dong Weihong, Meng Ying, Wang Yushan, et al. Hydrochemical Characteristics and Formation of the Shallow Groundwater in Fujin, Sanjiang Plain[J]. Journal of Jilin University (Earth Science Edition), 2017,47(2):542-553.
[1] 张雷, 樊洪波, 侯伟, 张伟, 郝帅, 孙晓光. 煤层气井产出剖面测试技术及应用[J]. 吉林大学学报(地球科学版), 2020, 50(2): 617-626.
[2] 侯伟, 赵天天, 张雷, 熊先钺, 许浩, 巢海燕, 张伟, 王伟, 张慧. 基于低场核磁共振的煤储层束缚水饱和度应力响应研究与动态预测——以保德和韩城区块为例[J]. 吉林大学学报(地球科学版), 2020, 50(2): 608-616.
[3] 郑天成, 侯卫生, 何思彤. 基于二维地质剖面的三维地质结构多点统计学模拟方法[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1496-1506.
[4] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
[5] 束龙仓, 许杨, 吴佩鹏. 基于MODFLOW参数不确定性的地下水水流数值模拟方法[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1803-1809.
[6] 陈欢庆, 穆剑东, 王珏, 邓西里. 扇三角洲沉积储层特征与定量评价——以辽河西部凹陷某试验区于楼油层为例[J]. 吉林大学学报(地球科学版), 2017, 47(1): 14-24.
[7] 张延凯, 李克庆, 杨诗海, 李迪, 宫明山. 地质统计学储量估算中块尺寸的合理选择[J]. 吉林大学学报(地球科学版), 2017, 47(1): 106-112.
[8] 刘鹏, 王伟锋, 孟蕾, 姜帅. 鄂尔多斯盆地上古生界煤层气与致密气联合优选区评价[J]. 吉林大学学报(地球科学版), 2016, 46(3): 692-701.
[9] 蔡益栋, 刘大锰, 姚艳斌, 李俊乾, 郭晓茜, 张百忍. 鸡西盆地煤层气控气地质特征及有利区分布[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1779-1788.
[10] 陈树旺,甄甄,黄欣,周永恒,鲍庆中,段瑞炎. 俄罗斯东部地区油气资源远景分析[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1768-1778.
[11] 尚彦军,刘嘉麒,夏燕青,刘大安,雷天柱,张路青. 从水井岩大型滑坡表面高温降解喷出物特征到汶川地震天然气体溢出爆炸模型[J]. 吉林大学学报(地球科学版), 2014, 44(1): 230-248.
[12] 杨勇强, 邱隆伟, 孙宝强, 付育璞. 微观组分聚类分析在物源体系恢复中的应用——以民丰洼陷沙三段中亚段为例[J]. J4, 2012, 42(1): 30-38.
[13] 李章林, 张夏林, 翁正平, 杨成杰, 孙卡. 动态构建福建紫金山铜金矿矿体模型[J]. J4, 2011, 41(3): 945-952.
[14] 苗长盛, 董清水, 张旗, 崔大勇, 许圣传, 王敏雪. 储层流动单元研究在油田老区挖潜中的应用--以吉林油田乾146区块开发为例[J]. J4, 2011, 41(1): 39-45.
[15] 陈永良, 李学斌. 基于核函数理论的系统聚类分析[J]. J4, 2010, 40(5): 1211-1216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!