吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1506-1513.doi: 10.13278/j.cnki.jjuese.20200270

• 绿色岩土工程 • 上一篇    下一篇

新桩贯入对邻近再利用既有桩的影响

崔纪飞1, 饶平平1, 李镜培2   

  1. 1. 上海理工大学环境与建筑学院, 上海 200093;
    2. 同济大学土木工程学院, 上海 200092
  • 收稿日期:2020-11-21 出版日期:2021-09-26 发布日期:2021-09-29
  • 作者简介:崔纪飞(1991-),男,讲师,博士,主要从事桩基服役性能演化和再利用研究,E-mail:cuijifei@usst.edu.cn
  • 基金资助:
    国家自然科学基金项目(41972274)

Influence of New Pile Penetration on Adjacent Reused Pile

Cui Jifei1, Rao Pingping1, Li Jingpei2   

  1. 1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China;
    2. College of Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2020-11-21 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the National Natural Science Foundation of China (41972274)

摘要: 采用理论分析的方法,首先基于半无限土体中改进的球孔扩张理论,求解新桩沉桩挤土效应引起的土体位移场。然后将其作为已知条件施加于邻近既有桩,分析既有桩变形和内力变化规律,探讨既有桩桩端约束条件、桩身刚度及土体模量对既有桩响应的影响;同时结合数值分析,对本文理论方法进行验证。最后分析了新旧桩之间距离和新桩半径对挤土效应引起的既有桩变形和内力的影响。结果表明:桩端约束形式仅影响桩端附近桩身变形;随着新旧桩之间距离的增加,既有桩变形和内力显著减小;随着桩径的增加,既有桩变形和内力均逐渐增大。最后提出采用远离既有桩和采用长细桩的措施来降低新桩施工对既有桩的影响。

关键词: 既有桩, 再利用, 贯入, 挤土位移, 变形

Abstract: The cavity expansion theory of semi-infinite soil is adopted to obtain the displacement field of soil caused by the new pile driving, and then it is applied to the existing pile based on the two-stage method to analyze the deformation and internal force changes of the existing pile. The constraint condition of the existing pile bottom, the rigidity of the pile body, and the soil modulus on the response of the existing pile was studied, meanwhile, the theoretical method was verified by using the numerical analysis, and also the influence of the distance between the new and used piles and the radius of the new piles was analyzed. The results show that the constraint of the pile tip only affects the deformation of the pile body near the pile tip:With the increase of the distance between the new and old piles, the deformation and internal force of the existing piles decrease significantly; The deformation and internal force of the existing pile increase gradually with the increase of the new pile diameter. The measures to stay away from existing piles and using long and thin piles are proposed to reduce the impact of new pile construction on existing piles.

Key words: existing pile, reuse, penetration, compaction displacement, deformation

中图分类号: 

  • TU473
[1] 贾水钟, 贾晓峰. 浅析静安顺德苑工程的老桩利用问题[J]. 建筑结构, 2007, 37(增刊1):477-480. Jia Shuizhong, Jia Xiaofeng. Settlement Design of Making Use of the Old Bored Pile in Jing'an Shunde Building[J]. Building Structure, 2007, 37(Sup.1):477-480.
[2] 姚建平. 既有桩再利用及新旧桩混合使用条件下的静压新桩施工控制工艺研究[J]. 建筑施工, 2016, 38(4):402-405. Yao Jianping. Study on Construction Control Technology for New Static Pressure Piles Under Condition of Recycled Existing Piles and New-Old Mixed Piles[J]. Building Construction, 2016, 38(4):402-405.
[3] 王龙胜, 衣倩倩, 张斌. 既有桩基耐久性评估及再利用分析研究[J]. 工程建设, 2017, 49(5):25-28. Wang Longsheng, Yi Qianqian, Zhang Bin. Analytical Study on Reuse of Existing Pile Foundation and Its Durability Evaluation[J]. Engineering Construction, 2017, 49(5):25-28.
[4] Leung C F, Chow Y K, Shen R F. Behavior of Pile Subject to Excavation Induced Soil Movement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(11):947-954.
[5] Leung C F, Lim J K, Shen R F, et al. Behavior of Pile Groups Subject to Excavation-Induced Soil Movement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(1):58-65.
[6] Leung C F, Ong D E L, Chow Y K. Pile Behavior due to Excavation-Induced Soil Movement in Clay:II:Collapsed Wall[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(1):45-53.
[7] Poulos H G, Chen L T, Hull T S. Model Tests on Single Piles Subjected to Lateral Soil Movement[J]. Soil and Foundations, 1995, 35(4):85-92.
[8] Chen L T, Poulos H G, Hull T S. Model Tests on Pile Groups Subjected to Lateral Soil Movement[J]. Soil and Foundations, 1997, 37(1):1-12.
[9] Sagaseta C. Analysis of Undrained Soil Deformation due to Ground Loss[J]. Géotechnique, 1987, 37(3):67-86.
[10] Sagaseta C, Whittle A J. Prediction of Ground Movements due to Pile Driving in Clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(1):55-66.
[11] 周火垚, 施建勇. 饱和软黏土中足尺静压桩挤土效应试验研究[J]. 岩土力学, 2009, 30(11):3291-3296. Zhou Huoyao, Shi Jianyong. Test Research on Soil Compacting Effect of Full Scale Jacked-in Pile in Saturated Soft Clay[J]. Rock and Soil Mechanics, 2009, 30(11):3291-3296.
[12] 张明义, 刘雪颖, 王永洪, 等. 粉土及粉质黏土对静压沉桩桩端阻力影响机制现场试验[J]. 吉林大学学报(地球科学版), 2020, 50(6):1804-1813. Zhang Mingyi, Liu Xueying, Wang Yonghong, et al. Feild Test on Influencing Mechanism of Silty Soil and Silty Clay on Tip Resistance of Static Pressure Pile[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(6):1804-1813.
[13] 罗战友, 夏建中, 龚晓南, 等. 考虑孔压消散的静压单桩挤土位移场研究[J]. 岩石力学与工程学报, 2014, 33(增刊1):2765-2772. Luo Zhanyou, Xia Jianzhong, Gong Xiaonan, et al. Study of Compacting Soil Displacements Around Jacked Single Pile Based on Excess Pore Pressure Dissipation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup. 1):2765-2772.
[14] 张亚国, 李镜培. 软黏土中静压沉桩引起的侧向挤土位移分析[J]. 同济大学学报(自然科学版), 2015, 43(12):1801-1806. Zhang Yaguo, Li Jingpei.Lateral Displacements of Ground Caused by Piles Installation in Soft Clay[J]. Journal of Tongji University (Natural Science), 2015, 43(12):1801-1806.
[15] 朱宁, 施建勇, 陈海丰. 一种半无限土体中圆孔扩张的分析方法[J]. 岩土力学, 2006, 27(2):257-260. Zhu Ning, Shi Jianyong, Chen Haifeng. A Method for Cavity Expansion in Semi-Infinite Soil[J]. Rock and Soil Mechanics, 2006, 27(2):257-260.
[16] Vesic A S. Bending of Beams Resting on Isotropic Elastic Solids[J]. Journal of Soil Mechanics and Foundation Engineering, ASCE, 1961, 87(2):35-53.
[1] 刘建民, 赵国春, 徐刚, 邱海成, 李建锋, 肖昌浩, 沙德铭, 刘福兴, 毕广源, 房兴, 张家奇, 郭祺, 于婳. 辽东半岛金矿成矿作用与深部资源勘查[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1613-1635.
[2] 黄达, 马昊, 石林. 反倾层状岩质边坡倾倒变形机理与影响因素的离散元模拟[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1770-1782.
[3] 李立云, 王子英, 王晓静, 杜修力. 近铁路基坑通风井段变形特征及其机制分析[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1441-1451.
[4] 苏亮, 时伟, 水伟厚, 曹建萌. 高能级强夯法处理深厚吹填砂土地基现场试验[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1560-1569.
[5] 石磊, 周喜文, 郑常青, 董云峰, 周枭, 郭腾达. 浙西南遂昌—大柘地区八都岩群印支期变质变形序列[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1658-1671.
[6] 陈永珍, 吴斌, 杨帆, 吴纲, 翁杨. 充气截排水渗流与变形耦合数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(2): 485-492.
[7] 张丙先. 西藏玉曲河下游岸坡倾倒变形机制及稳定性分析[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1539-1545.
[8] 唐军峰, 唐雪梅, 曾向农, 杨军, 李学政. 蓄水后库岸堆积体边坡变形特征及其稳定性分析[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1546-1555.
[9] 魏恺泓, 裴向军, 张世殊, 冉从彦, 崔中涛, 李青春, 李进元. 基于IBIS-L的某黄土高填方边坡支护结构变形特征[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1556-1565.
[10] 李昂, 鞠林波, 张丽艳. 塔里木盆地古城低凸起古-中生界构造演化特征与油气成藏关系[J]. 吉林大学学报(地球科学版), 2018, 48(2): 545-555.
[11] 马德龙, 何登发, 魏东涛, 王彦君, 魏彩茹. 准噶尔盆地南缘古牧地背斜多期构造变形特征[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1695-1704.
[12] 崔建军, 王艳红, 郑光高, 施炜, 马立成. 大悟杂岩的形成和抬升时代及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 139-153.
[13] 刘兰兰, 李鸿儒, 常秋影, 李晓乐, 王洪宇, 赵传海. 非饱和土增湿变形的实用计算方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1790-1798.
[14] 潘建立. 顶管施工引起土体变形的计算方法及应用[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1458-1465.
[15] 刘勃然, 李伟, 张守志, 彭甜明, 冯志强. 大兴安岭北段伸展构造[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1440-1448.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[2] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289 -0294 .
[3] 郭洪金,李勇,钟建华,王海侨. 山东东辛油田古近系沙河街组一段碳酸盐岩储集特征[J]. J4, 2006, 36(03): 351 -357 .
[4] 杜业波,季汉成,朱筱敏. 川西前陆盆地上三叠统须家河组成岩相研究[J]. J4, 2006, 36(03): 358 -364 .
[5] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[6] 苏继军,殷 琨,郭同彤. 金刚石绳索取心钻杆接头螺纹的优化研究[J]. J4, 2005, 35(05): 677 -680 .
[7] 唐健生,夏日元,邹胜章,梁 彬. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. J4, 2005, 35(04): 481 -0486 .
[8] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[9] 杜春国,邹华耀,邵振军,张俊. 砂岩透镜体油气藏成因机理与模式[J]. J4, 2006, 36(03): 370 -376 .
[10] 许盛伟,王明常,白亚辉,张学明. 基于J2EE的分布式海量影像分发服务研究和实现[J]. J4, 2006, 36(03): 491 -496 .