吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1441-1451.doi: 10.13278/j.cnki.jjuese.20200246

• 岩土防灾与减灾 • 上一篇    下一篇

近铁路基坑通风井段变形特征及其机制分析

李立云, 王子英, 王晓静, 杜修力   

  1. 北京工业大学城市与工程安全减灾教育部重点实验室, 北京 100124
  • 收稿日期:2020-11-03 出版日期:2021-09-26 发布日期:2021-09-29
  • 作者简介:李立云(1973-),男,教授,博士,主要从事地震工程及岩土工程防灾减灾方面的研究,E-mail:llyun5921@163.com
  • 基金资助:
    北京市科技计划项目(Z181100009018001);北京工业大学研究生科技基金项目(ykj-2018-00601)

Study on Deformation Characteristics of Ventilation Shaft Section in Foundation Pit Excavation Adjacent to Railway

Li Liyun, Wang Ziying, Wang Xiaojing, Du Xiuli   

  1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • Received:2020-11-03 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the Science and Technology Planning Project of Beijing (Z181100009018001) and the Science and Technology Fund of Beijing University of Technology to Graduate (ykj-2018-00601)

摘要: 针对长春某地下车站深基坑工程,深入研究了基坑开挖过程中近铁路侧通风井段险情的发生过程及其致险机制。通过分析通风井附近桩身水平位移、桩顶水平位移、支撑轴力以及铁路道轨两侧路肩沉降差,探讨了通风井段基坑变形过大的原因;采用ABAQUS有限元软件对该基坑的施工过程进行数值模拟,分析了通风井段基坑施工险情的发生机制。研究结果表明,通风井段基坑变形过大是由岩土体过度应力释放和基坑变形空间效应共同作用导致。由于通风井处阳角的存在,且施工过程中通风井段基坑未架设斜撑,致使该处基坑变形的空间效应显著,坑壁产生指向通风井的扭转变形;开挖速度过快、支撑安装不及时和岩土体中过度应力释放导致围护桩变形过大,使基坑的稳定性变差。

关键词: 基坑, 变形特征, 施工过程, 数值模拟

Abstract: In this paper, for a deep foundation pit of an underground station in Changchun, the instability crisis and its mechanism in the ventilation shaft section during the excavation of the foundation pit are studied in depth. Through the analysis of the horizontal displacement of the pile body, the horizontal displacement of the pile top, the support axial force of the bracing, and the settlement difference of the shoulders on both sides of the railway track, the major causes of the excessive deformation of the foundation pit in the ventilation shaft section are discussed. Then, the construction process of the foundation pit is simulated using ABAQUS finite element software, and the instability mechanism of the foundation pit in the ventilation shaft section is analyzed. The results demonstrate that the excessive deformation of the foundation pit in the ventilation shaft section is caused by the coupling of the excessive stress release of strata and the spatial effect of the foundation pit deformation. The spatial effect of the foundation pit deformation in the ventilation shaft section is remarkable due to the existence of positive corner in the ventilation shaft and the absence of diagonal bracing during construction, and the pit wall produces torsional deformation pointing to the inside of the ventilation shaft. The excessive excavation and unsuitable support installation lead to the excessive stress release in strata, which causes the excessive deformation of retaining piles and deteriorates the stability of the foundation pit.

Key words: foundation pit, deformation characteristics, construction process, numerical simulation

中图分类号: 

  • TU43
[1] 楼春晖, 夏唐代, 刘念武. 软土地区基坑对周边环境影响空间效应分析[J]. 岩土工程学报, 2019, 41(增刊1):249-252. Lou Chunhui, Xia Tangdai, Liu Nianwu. Spatial Effects of Deformation due to Excavation in Soft Clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Sup. 1):249-252.
[2] 张治国, 赵其华, 鲁明浩. 邻近深基坑开挖的历史保护建筑物沉降实测分析[J]. 土木工程学报, 2015, 48(增刊2):137-142. Zhang Zhiguo, Zhang Qihua, Lu Minghao. Analysis on Settlement Monitoring of Historical Protective Buildings Adjacent to Deep Foundation Pit Excavation[J]. China Civil Engineering Journal, 2015, 48(Sup. 2):137-142.
[3] 刘念武, 龚晓南, 俞峰, 等. 软土地区基坑开挖引起的浅基础建筑沉降分析[J]. 岩土工程学报, 2014, 36(增刊2):325-329. Liu Nianwu, Gong Xiaonan, Yu Feng, et al. Settlement of Buildings with Shallow Foundations Induced by Excavation in Soft Soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(Sup. 2):325-329.
[4] 黄钟晖, 杨磊. 广西大学地铁车站深基坑变形监测数据分析[J]. 工程地质学报, 2013, 21(3):459-463. Huang Zhonghui, Yang Lei. Analysis of Deformation Monitoring Data from Deep Excavation for Guangxi University Subway Station[J]. Journal of Engineering Geology, 2013, 21(3):459-463.
[5] 叶帅华, 李德鹏. 复杂环境下深大基坑开挖监测与数值模拟分析[J]. 土木工程学报, 2019, 52(增刊2):117-126. Ye Shuaihua, Li Depeng. Monitoring and Simulation Analysis of Deep and Large Foundation Pit Excavation in Complex Environment[J]. China Civil Engineering Journal, 2019, 52(Sup. 2):117-126.
[6] 张新东, 姚爱军. 某深基坑围护桩结构性态监测与数值模拟研究[J]. 地下空间与工程学报, 2011, 7(6):1138-1142. Zhang Xindong, Yao Aijun. Study on Behavior Monitoring and Numerical Simulation of Retaining Pile Structure in a Deep Foundation Pit[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(6):1138-1142.
[7] 张新东. 邻近铁路深基坑支护结构及路基安全性控制研究[D]. 北京:北京工业大学, 2012. Zhang Xindong.Study on the Retaining Structure of Deep Foundation Pit and Safety Control of Subgrade Close to Railway[D]. Beijing:Beijing University of Technology, 2012.
[8] 张明聚, 何欢, 李春辉.明挖地铁车站围护结构受力变形监测与数值模拟分析[J]. 北京工业大学学报, 2013, 39(6):875-880. Zhang Mingju, He Huan, Li Chunhui. Deformation and Force Analysis on Retaining Structure of an Open-Excavated Subway Station by Monitoring and Numerical Simulation[J]. Journal of Beijing University of Technology, 2013, 39(6):875-880.
[9] 刘杰, 姚海林, 任建喜. 地铁车站基坑围护结构变形监测与数值模拟[J]. 岩土力学, 2010, 31(增刊2):456-461. Liu Jie, Yao Hailin, Ren Jianxi.Monitoring and Numerical Simulation of Deformation of Retaining Structure in Subway Station Foundation Pit[J]. Rock and Soil Mechanics, 2010, 31(Sup. 2):456-461.
[10] 胡德省, 刘彬. 基于数值模拟分析的基坑变形特征研究[J]. 土工基础, 2019, 33(3):339-342, 346. Hu Desheng, Liu Bin. Numerical Analysis on the Deformation Characteristics of a Deep Excavation[J]. Soil Engineering and Foundation, 2019, 33(3):339-342, 346.
[11] 王丽丽. 地铁深基坑开挖现场监测及有限元分析[D]. 兰州:兰州理工大学, 2018. Wang Lili. On-Site Monitoring and Finite Element Analysis of Deep Excavation of Subway[D]. Lanzhou:Lanzhou University of Technology, 2018.
[12] 王晓静, 李立云, 杜修力, 等. 削桩施作诱发基坑本体力学响应数值分析[J]. 防灾科技学院学报, 2020, 22(3):10-17. Wang Xiaojing, Li Liyun, Du Xiuli, et al. Numerical Analysis of Foundation Pit Mechanical Response Induced by Pile Cutting[J]. Journal of Institute of Disaster Prevention, 2020, 22(3):10-17.
[13] Faheem Hamdy, Cai Fei, Ugai Keizo, et al. Two-Dimensional Base Stability of Excavations in Soft Soils Using FEM[J]. Computers and Geotechnics, 2003, 30(2):141-163. doi:10.1016/S0266-352X(02)00061-7.
[14] 杨雪强, 刘祖德, 何世秀. 论深基坑支护的空间效应[J]. 岩土工程学报, 1998, 20(2):74-78. Yang Xueqiang, Liu Zude, He Shixiu. Research about Spatial Effect of Deep Pit Supporting[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2):74-78.
[15] 孙超, 许成杰. 基坑开挖对周边环境的影响[J]. 吉林大学学报(地球科学版), 2019, 49(6):1698-1705. doi:10.13278/j.cnki.jjuese.20190003. Sun Chao, Xu Chengjie. Influence of Excavation of a Deep Excavation on the Surrounding Environment[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(6):1698-1705. doi:10.13278/j.cnki.jjuese.20190003.
[16] 杨丽春, 庞宇斌, 李慎刚. 超长基坑开挖的空间效应[J]. 吉林大学学报(地球科学版), 2015, 45(2):541-545. doi:10.13278/j.cnki.jjuese.201502202. Yang Lichun, Pang Yubin, Li Shengang. Research on Construction Spatial Effects in Long Foundation Pit[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(2):541-545. doi:10.13278/j.cnki.jjuese.201502202.
[17] 俞建霖, 龚晓南. 深基坑工程的空间性状分析[J]. 岩土工程学报, 1999, 21(1):21-25. Yu Jianlin, Gong Xiaonan. Spatial Behavior Analysis of Deep Excavation[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(1):21-25.
[18] 高峰. 深基坑开挖对相邻建筑结构内力影响的研究[D]. 北京:北京工业大学, 2007. Gao Feng. Study of the Effect on Inner Force of Adjacent Building Caused by Deep Excavation Engineering[D]. Beijing:Beijing University of Technology, 2007.
[19] 费康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京:中国水利水电出版社, 2010. Fei Kang, Zhang Jianwei. Application of ABAQUS in Geotechnical Engineering[M]. Beijing:China Water & Power Press, 2010.
[1] 师文豪, 杨天鸿. 渗流应力耦合作用下顺倾向层状边坡各向异性渗流特征数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1783-1788.
[2] 余莉, 张钰, 王维玉, 韩子豪, 赵拓. 基坑装配式可回收支护和桩锚支护结构的受力与变形分析[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1789-1800.
[3] 秦胜伍, 张延庆, 张领帅, 苗强, 程秋实, 苏刚, 孙镜博. 基于Stacking模型融合的深基坑地面沉降预测[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1316-1323.
[4] 蔡晓光, 徐洪路, 李思汉, 张少秋. 地震作用下返包式加筋土挡墙数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1416-1426.
[5] 魏家斌, 王卫东, 吴江斌. 免共振沉桩过程对地表振动影响的FLAC3D数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1514-1522.
[6] 李一赫, 王殿举, 于法浩, 刘志强. 下刚果盆地白垩系盐构造的形成演化[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1628-1638.
[7] 吕雅馨, 骆祖江, 徐成华. 南京汤山地区地热水资源评价[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1844-1853.
[8] 郎秋玲, 王伟, 高成梁. 基于组合权重与灰色关联度分析法的地铁深基坑开挖稳定性评价[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1823-1832.
[9] 盛冲, 许鹤华, 张云帆, 张文涛, 任自强. 钙质砂水理性质及对岛礁淡水透镜体形成的影响[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1127-1138.
[10] 段云星, 杨浩. 增强型地热系统采热性能影响因素分析[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1161-1172.
[11] 孙超, 许成杰. 基坑开挖对周边环境的影响[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1698-1705.
[12] 王常明, 李桐, 田书文, 李硕. 基于LAHARZ的泥石流堆积范围预测模型的建立及应用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1672-1679.
[13] 孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1723-1731.
[14] 常晓军, 葛伟亚, 于洋, 赵宇, 叶龙珍, 张泰丽, 魏振磊. 福建省永泰县东门旗山滑坡诱发机理与防治措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1063-1072.
[15] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[3] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[4] 赵宏光,孙景贵,陈军强,赵俊康,姚凤良,段 展. 延边小西南岔富金斑岩铜矿床的含矿流体起源与演化——H,O,C,S,Pb同位素示踪[J]. J4, 2005, 35(05): 601 -606 .
[5] 孟元林,高建军,刘德来,牛嘉玉,孙洪斌,周玥,肖丽华,王粤川. 辽河坳陷鸳鸯沟地区成岩相分析与异常高孔带预测[J]. J4, 2006, 36(02): 227 -0233 .
[6] 曾昭发,吴燕冈,郝立波,王者江,黄 航. 基于泊松定理的重磁异常分析方法及应用[J]. J4, 2006, 36(02): 279 -0283 .
[7] 常秋玲,卢欣祥,刘东华,李明立. 东秦岭五朵山花岗岩体及金矿关系探讨[J]. J4, 2006, 36(03): 319 -325 .
[8] 马艳梅,崔启良,周强,黄伟军,刘冶,彭刚,邹广田. 橄榄石原位高温拉曼光谱研究[J]. J4, 2006, 36(03): 342 -345 .
[9] 郝琦,刘震,查明,李春霞. 辽河茨榆坨潜山太古界裂缝型储层特征及其控制因素[J]. J4, 2006, 36(03): 384 -390 .
[10] 曾道明,纪宏金,陈 满,胡大千,朱永正. 胶东山城金矿地质与地球化学变量的关系[J]. J4, 2006, 36(04): 511 -515 .