吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1801-1810.doi: 10.13278/j.cnki.jjuese.20200054

• 地质工程与环境工程 • 上一篇    下一篇

水力联系系数法定量评价含水层之间水力联系

李超峰1,2   

  1. 1. 中煤科工集团西安研究院有限公司, 西安 710077;
    2. 陕西省煤矿水害防治技术重点实验室, 西安 710077
  • 收稿日期:2020-03-05 出版日期:2021-11-26 发布日期:2021-11-24
  • 作者简介:李超峰(1983-),男,副研究员,博士,主要从事水文地质及矿井水害防治技术方面的研究,E-mail:lichaofeng007@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFC0501104)

Hydraulic Connection Coefficient and Quantitative Evaluation of Hydraulic Connection Between Aquifers

Li Chaofeng1,2   

  1. 1. Xi'an Research Institute, China Coal Technology and Engineering Group Corp, Xi'an 710077, China;
    2. Shaanxi Key Laboratory of Coal Mine Hazard Prevention and Control Technology, Xi'an 710077, China
  • Received:2020-03-05 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Supported by National Key R&D Program of China (2016YFC0501104)

摘要: 为了定量研究与评价含水层之间地下水水力联系程度,首次提出了水力联系系数C(hydraulic connection coefficient)的概念。将水力联系系数C定义为观测孔目的含水层水位降深与该观测孔位置抽水含水层水位降深的比值。通过水力联系系数,可定量评价某含水层水平上同层之间和垂向上不同含水层之间的水力联系程度。依据鄂尔多斯盆地白垩系洛河组各含水层段的水力联系系数C值,将含水层之间水力联系分为5个等级。其中,0.000 0 ≤ C<0.062 5,0.062 5 ≤ C<0.125 0,0.125 0 ≤ C<0.250 0,0.250 0 ≤ C<0.500 0,C ≥ 0.500 0,分别代表水力联系等级为极弱、弱、中等、强、极强。以高家堡井田钻孔抽(放)水试验数据为例,采用水力联系系数和观测孔水位响应时间两个指标定量评价了区内巨厚层状非均质洛河组含水层内部水力联系。结果表明:洛河组中上段水平同层之间的水力联系系数分别为0.373 0、0.413 8,观测孔水位响应时间较短(约为5 min),水力联系强;洛河组下段水平同层之间水力联系系数分别为0.440 1、0.491 1,观测孔水位响应时间较短(为9~20 min),水力联系强;洛河组中上段与下段垂向水力联系系数分别为0.000 2、0.007 2、0.089 7,观测孔水位响应时间较长(大于60 min),水力联系极弱至弱。

关键词: 洛河组含水层, 垂向层状非均质含水层, 水力联系系数, 抽(放)水试验, 地下水

Abstract: In order to quantitatively evaluate the degree of groundwater hydraulic connection between aquifers, the concept of "hydraulic connection coefficient" C is first proposed. Based on the drawdown of groundwater level in full penetrating wells during the steady-state pumping test when the groundwater level is stable, the hydraulic connection coefficient C is defined as the ratio of the drawdown of groundwater level of the target aquifer to the drawdown of groundwater level of the pumping/dewatering aquifer in the observation borehole. The hydraulic connection coefficient can be used to quantitatively evaluate the degree of hydraulic connection between two points in different directions and different distances on the aquifer plan, and also between different aquifers in the vertical direction. According to the hydraulic connection coefficient C value of the aquifers in Luohe Formation in Ordos basin, the degree of groundwater hydraulic connection between the aquifers is divided into five grades:Among them, 0.000 0 ≤ C<0.062 5, the hydraulic connection is very weak; 0.062 5 ≤ C<0.125 0, the hydraulic connection is weak; 0.125 0 ≤ C<0.250 0, the hydraulic connection is medium; 0.250 0 ≤ C<0.500 0, the hydraulic connection is strong; C ≥ 0.500 0, the hydraulic connection is very strong. Taking the data of pumping test and dewatering test in Gaojiabu mine field as an example, the hydraulic connection coefficient and the response time of groundwater level in the observation borehole beginning to fall are used to quantitatively evaluate the internal groundwater hydraulic connection of the thick and layered Luohe Formation. Among them, when the hydraulic connection coefficient of the middle-upper layers in Luohe Formation is 0.373 0 and 0.413 8 respectively, and the response time of groundwater level in the observation borehole beginning to fall is very short (about 5 min), the groundwater hydraulic connection is strong; The hydraulic connection coefficient of the lower layers in Luohe Formation is 0.440 1 and 0.491 1, respectively, and the response time of groundwater level in observation borehole beginning to fall is short (9-20 min), the groundwater hydraulic connection is strong; When the hydraulic connection coefficient between the middle-upper and lower layers in Luohe Formation is 0.000 2, 0.007 2 and 0.089 7, respectively, and the response time of groundwater level in the observation borehole is longer (more than 60 min), the groundwater hydraulic connection is weak or very weak.

Key words: Luohe Formation aquifer, vertical layered aquifers, hydraulic connection coefficient, pumping (or dewatering) test, groundwater

中图分类号: 

  • P641
[1] Bear J. Hydraulics of Groundwater[M]. New York:Dover Publications,INC,1979.
[2] 陈崇希,林敏,成建梅.地下水动力学[M].5版.北京:地质出版社,2011. Chen Chongxi,Lin Min,Cheng Jianmei. Hydraulics of Groundwater[M]. 5th ed. Beijing:Geological Publishing House,2011.
[3] 郭东屏,宋焱勋,钱会,等.地下水动力学[M].西安:陕西科学技术出版社,1994. Guo Dongping,Song Yanxun,Qian Hui, et al. Hydraulics of Groundwater[M]. Xi'an:Shaanxi Science and Technology Press,1994.
[4] Bear J.多孔介质流体动力学[M].李竞生,陈崇希,译.北京:中国建筑工业出版社,1983. Bear J. Dynamics of Fluids in Porous Media[M]. Translated by Li Jingsheng,Chen Chongxi. Beijing:China Architecture & Building Press,1983.
[5] 王明明,解伟,安永会,等.封隔注浆分层成井技术在水文地质勘查中的应用研究[J].水文地质工程地质,2019,46(1):50-55. Wang Mingming,Xie Wei,An Yonghui,et al. Application of the Technology of Injecting Cement for the Stratified Well Completion to Hydrogeological Exploration[J]. Hydrogeology & Engineering Geology,2019,46(1):50-55.
[6] 邵红旗,曹祖宝,李建文,等.一种放水试验分析方法及其应用[J].水文地质工程地质,2014,41(2):7-12,43. Shao Hongqi,Cao Zubao,Li Jianwen,et al. A Method of Analysis of Dewatering Test and Application[J]. Hydrogeology & Engineering Geology,2014,41(2):7-12,43.
[7] 张海涛,许光泉.基于Visual Basic 6.0的含水层水文地质参数求取软件的开发及应用[J].煤田地质与勘探,2018,46(2):105-110. Zhang Haitao,Xu Guangquan. The Development and Application of Aquifer Hydrogeological Parameter Calculation Software Based on Visual Basic 6.0[J]. Coal Geology & Exploration,2018,46(2):105-110.
[8] 方刚,梁向阳,黄浩,等.巴拉素井田煤层富水机理与注浆堵水技术[J].煤炭学报,2019,44(8):2470-2483. Fang Gang,Liang Xiangyang,Huang Hao,et al. Water-Rich Mechanism of Coal Seam and Grouting and Blocking Water Technology in Balasu Mine Field[J].Journal of China Coal Society,2019,44(8):2470-2483.
[9] 徐智敏,高尚,孙亚军,等.西部典型侏罗系富煤区含水介质条件与水动力学特征[J].煤炭学报,2017,42(2):444-451. Xu Zhimin,Gao Shang,Sun Yajun,et al. A Study of Conditions of Water Bearing Media and Water Dynamics in Typical Jurassic Coal Rich Regions in Western China[J]. Journal of China Coal Society,2017,42(2):444-451.
[10] 李超峰,虎维岳,刘英锋.洛河组含水层垂向差异性研究及保水采煤意义[J].煤炭学报,2019,44(3):848-857. Li Chaofeng,Hu Weiyue,Liu Yingfeng. Vertical Hydrogeological Characteristics of Luohe Aquifer and Its Significance of Water-Preserved Coal Mining[J]. Journal of China Coal Society,2019,44(3):848-857.
[11] 李超峰.彬长矿区巨厚洛河组垂向差异性研究[J].煤炭技术,2018,37(4):131-133. Li Chaofeng. Vertical Differences of Thick Luohe Formation in Binchang Mining Area[J]. Coal Technology,2018,37(4):131-133.
[12] 刘英锋,郭小铭.导水裂缝带部分波及顶板含水层条件下涌水量预测[J].煤田地质与勘探,2016,44(5):97-101,107. Liu Yingfeng,Guo Xiaoming. Prediction of Water Inflow in Roof Aquifer Affected by Water-Flowing Fracture Zone[J]. Coal Geology & Exploration,2016,44(5):97-101,107.
[13] 周建军.崔木煤矿顶板涌突水类型及其判别研究[J].煤矿安全,2019,50(4):205-207,212. Zhou Jianjun. Study on Roof Water Inrush Type and Its Discrimination in Cuimu Coal Mine[J]. Safety in Coal Mines,2019,50(4):205-207,212.
[14] 国家煤矿安全监察局. 煤矿防治水细则[M]. 北京:煤炭工业出版社,2018. The National Coal Mine Safety Administration of China. Handbook of Mine Water Hazard Prevention and Control[M]. Beijing:China Coal Industry Publishing House,2018.
[15] 李超峰.采煤工作面顶板巨厚层状含水层涌水量预测研究[D].北京:煤炭科学研究总院,2019. Li Chaofeng. Prediction Theory and Method of Water Inflow from Roof Thick Layered Aquifer of Coal Mining Face[D]. Beijing:China Coal Research Institute, 2019.
[16] 李云峰,冯建国,王玮,等.鄂尔多斯盆地白垩系含水层系统分析[J].西北地质,2004,37(1):90-96. Li Yunfeng,Feng Jianguo,Wang Wei,et al. The Groundwater System Analysis of Cretaceous System of Ordos Basin[J]. Northwestern Geology,2004,37(1):90-96.
[17] 方刚,刘柏根.基于巴拉素井田多孔抽水试验的含水层特征及水力联系研究[J].水文,2019,39(3):36-40,67. Fang Gang,Liu Baigen. Research on Aquifers Characteristics and Hydraulic Connection Based on Multiple Drilling Pumping Tests in Balasu Well Field[J]. Journal of China Hydrology,2019,39(3):36-40,67.
[18] 彭涛,龙良良,刘凯祥,等.基于煤层顶板抽水试验的含水层水力联系研究[J].矿业安全与环保,2019,46(3):66-69,73. Peng Tao,Long Liangliang,Liu Kaixiang,et al. Study on Aquifer Hydraulic Connection Based on Pumping Test of Coal Seam Roof[J]. Mining Safety & Environmental Protection,2019,46(3):66-69,73.
[19] 穆鹏飞.示踪试验在煤层顶底板充水含水层水力联系探查中的应用[J].中国煤炭,2019,45(5):55-58. Mu Pengfei. Application of Tracer Test in Hydraulic Connection Exploration of Water-Filled Aquifer in Roof and Floor of Coal Seam[J]. China Coal,2019,45(5):55-58.
[20] 姬中奎,薛小渊,杨志斌,等.神府煤田张家峁煤矿烧变岩与水库水力联系研究[J].中国煤炭地质,2019,31(4):57-61. Ji Zhongkui, Xue Xiaoyuan, Yang Zhibin, et al. Study on Hydraulic Connection Between Burnt Rock and Reservoir in Zhangjiamao Coalmine, Shenfu Coalfield[J]. Coal Geology of China,2019,31(4):57-61.
[21] 郑刚,曹剑然,程雪松,等.考虑承压含水层间越流的地下水回灌现场试验研究[J].岩土工程学报,2019,41(9):1609-1618. Zheng Gang,Cao Jianran,Cheng Xuesong,et al. Field Tests on Groundwater Recharge Considering Leakage Between Semiconfined Aquifers[J]. Chinese Journal of Geotechnical Engineering,2019,41(9):1609-1618.
[22] 许蓬,王明.环境同位素技术在判定矿井含水层间水力联系的应用[J].煤炭科学技术,2018,46(增刊1):227-230. Xu Peng,Wang Ming. Application of Environmental Isotopes Technology in Determining Hydraulic Connection Between Mine Aquifer[J]. Coal Science and Technology,2018,46(Sup.1):227-230.
[23] 蒋瑞,张志才,陈喜,等.西南喀斯特峰丛- 洼地水力联系特征分析[J].地球与环境,2018,46(2):121-128. Jiang Rui,Zhang Zhicai,Chen Xi,et al. Hydrologic Connectivity in Peak-Cluster Depression of Karst Area in Southwestern China[J]. Earth and Environment,2018,46(2):121-128.
[24] 苏小四,高睿敏,袁文真,等.基于环境同位素技术的河水补给研究:以沈阳黄家傍河水源地为例[J].吉林大学学报(地球科学版),2019,49(3):762-772. Su Xiaosi,Gao Ruimin,Yuan Wenzhen,et al. Research on River Recharge Based on Environmental Isotope Technology:A Case Study of Huangjia Riverside Well Field in Shenyang City[J]. Journal of Jilin University(Earth Science Edition),2019,49(3):762-772.
[25] 束龙仓,王明昭,张惠潼,等.咸淡水界面位置确定的综合方法(TEcG)及其应用[J].吉林大学学报(地球科学版),2019,49(6):1706-1713. Shu Longcang,Wang Mingzhao,Zhang Huitong,et al. Comprehensive Method (TEcG) of Determination of the Location of Freshwater and Saltwater Interface and Its Application[J]. Journal of Jilin University(Earth Science Edition),2019,49(6):1706-1713.
[26] 地质矿产部水文地质工程技术方法研究队.水文地质手册[M].北京:地质出版社,1978. Research Team of Hydrogeological & Engineering Technology Methods, Ministry of Geology and Mineral Resources, China. Handbook of Hydrogeology[M]. Beijing:Geological Publishing House,1978.
[1] 刘元晴, 周乐, 李伟, 王新峰, 马雪梅, 吕琳, 尹凯, 孟顺祥. 鲁中山区中生代构造活动对现今岩溶地下水赋存规律的控制作用[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1811-1822.
[2] 潘维强, 张黎明, 丛宇. 深厚松散地层泄压槽治理井筒破坏判据及其与地下水水位关系[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1578-1586.
[3] 闫佰忠, 孙剑, 王昕洲, 李晓萌, 孙丰博, 付丹平. 基于GIS-FAHP的石家庄市地下水源热泵适宜性分区[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1172-1181.
[4] 赵勇胜, 李彧. 黄原胶改性微米铁修复地下水中Cr(Ⅵ)污染的试验[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1224-1230.
[5] 王哲, 付宇, 朱静思, 曹文庚. 华北典型河道地下水回补效果评价[J]. 吉林大学学报(地球科学版), 2021, 51(3): 843-853.
[6] 闫佰忠, 孙丰博, 李晓萌, 王玉清, 范成博, 陈佳琦. 气候变化与人类活动对石家庄市藁城区地下水位埋深的影响分析[J]. 吉林大学学报(地球科学版), 2021, 51(3): 854-863.
[7] 骆奕杉, 李兆. 基于统计方法评价沁水盆地南部煤层气开采对地下水环境的影响[J]. 吉林大学学报(地球科学版), 2021, 51(2): 516-525.
[8] 朱君, 李婷, 陈超, 谢添, 张艾明. 近海核电厂核素地下水释放通量的模型计算方法[J]. 吉林大学学报(地球科学版), 2021, 51(1): 201-211.
[9] 闫佰忠, 孙剑, 王昕洲, 韩娜, 刘博. 基于多变量LSTM神经网络的地下水水位预测[J]. 吉林大学学报(地球科学版), 2020, 50(1): 208-216.
[10] 董林垚, 任洪玉, 雷俊山, 刘纪根. 地表暖化影响下温度示踪地下水流速方法[J]. 吉林大学学报(地球科学版), 2019, 49(3): 773-783.
[11] 付晓刚, 唐仲华, 刘彬涛, 蔺林林, 卜华, 闫佰忠. 基于模拟-优化模型的山东羊庄盆地地下水可开采量研究[J]. 吉林大学学报(地球科学版), 2019, 49(3): 784-796.
[12] 虞未江, 贾超, 狄胜同, 李康, 袁涵. 基于综合权重和改进物元可拓评价模型的地下水水质评价[J]. 吉林大学学报(地球科学版), 2019, 49(2): 539-547.
[13] 骆祖江, 宁迪, 杜菁菁, 陆玮. 吴江盛泽地区建筑荷载和地下水开采对地面沉降的影响[J]. 吉林大学学报(地球科学版), 2019, 49(2): 514-525.
[14] 洪梅, 韩旭, 王蔷, 刘璐, 史玉玺. 硫化纳米铁对模拟地下水中Cr(Ⅵ)的去除效果及影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1821-1830.
[15] 刘娜, 丁吉阳, 于庆民, 张思达, 赵宏君, 吕春欣. 超声强化零价铁活化过硫酸盐降解地下水中二恶烷[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1831-1837.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .