吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1789-1800.doi: 10.13278/j.cnki.jjuese.20210099

• 地质工程与环境工程 • 上一篇    下一篇

基坑装配式可回收支护和桩锚支护结构的受力与变形分析

余莉1,2, 张钰1, 王维玉2, 韩子豪1, 赵拓2   

  1. 1. 河北大学建筑工程学院, 河北 保定 071000;
    2. 河北省建筑科学研究院有限公司, 石家庄 050000
  • 收稿日期:2021-04-20 出版日期:2021-11-26 发布日期:2021-11-24
  • 作者简介:余莉(1985-),女,副教授,硕士生导师,主要从事地下工程和天然气水合物防砂方面的研究,E-mail:964630415@qq.com
  • 基金资助:
    河北大学教育厅在读研究生创新能力培养资助项目(HBU2021ss029);河北省博士后人社厅项目(B2020003028);河北省自然科学基金青年基金项目(E2020201013)

Stress and Deformation Analysis of Assembled Recoverable Support and Pile Anchor Support Structure in Foundation Pit

Yu Li1,2, Zhang Yu1, Wang Weiyu2, Han Zihao1, Zhao Tuo2   

  1. 1. School of Civil Engineering, Hebei University, Baoding 071000, Hebei, China;
    2. Hebei Construction Research Institute Co., Ltd, Shijiazhuang 050000, China
  • Received:2021-04-20 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Suppored by the Project of Innovation Ability Training for Graduate Students in the Department of Education of Hebei University (HBU2021ss029),the Post Doctoral Program of Human Resources and Social Security Department (B2020003028) and the Natural Science Foundation of Hebei Province Youth Fund Project (E2020201013)

摘要: 基坑支护工程在我国城市化建设过程中具有重要的作用,一些新型支护形式的出现极大丰富了基坑支护的多样性。本文以衡水市现场基坑支护实验工程为背景,工程将装配式可回收支护结构和桩锚支护结构作为研究对象,通过室内土工试验数据确定本构模型参数,利用有限元软件PLAXIS3D建立三维有限元模型,模拟基坑开挖和支护的全过程,并分析基坑土体和支护结构的受力、变形特征。对比相同土体和开挖条件下装配式可回收支护结构和桩锚支护结构的稳定性,结果表明:装配式可回收深基坑支护形式能更好地控制土体隆起变形,更利于限制深层土体的位移,也可以更好地控制坑顶水平位移。装配式支护结构施工简单速度快,且能回收利用,符合我国绿色建筑理念。

关键词: 装配式支护, 桩锚支护, 数值模拟, 稳定性对比分析

Abstract: Foundation pit support engineering plays an important role in the process of urbanization in China. The emergence of some new support forms has greatly enriched the diversity of foundation pit support. In this paper, by taking the Hengshui field foundation pit support experiment project as the background, the prefabricated recyclable support structure and pile-anchor support structure are studied; By using the finite element software PLAXIS3D, the constitutive model parameters are determined through indoor geotechnical test data, and the three-dimensional finite element model is established. Further, the process of foundation pit excavation and support is simulated, and the stress and deformation of foundation pit soil and support structure characteristics are analyzed. Through comparing the stability of the assembled recyclable support structure and the pile-anchor support structure under the same soil and excavation conditions, the following conclusions are obtained:The assembled recyclable deep foundation pit support form can not only better control the soil uplift deformation, which is more conducive to limit the displacement of deep soil, but also can better control the horizontal displacement of the pit top. The fabricated support structure is simple, quick in construction, recyclable, and conforms to the concept of green building in China.

Key words: assembled support, pile anchor support, numerical simulation, stability comparative analysis

中图分类号: 

  • P59
[1] 韩健勇,赵文,贾鹏蛟,等.桩锚支护结构深基坑受力变形及稳定性分析[J]. 地下空间与工程学报,2017,13(增刊2):907-914. Han Jianyong,Zhao Wen,Jia Pengjiao,et al. Analysis on Stress,Deformation and Stability of Deep Excavation Supported by Anchored Pile[J]. Journal of Underground Space and Engineering, 2017,13(Sup.2):907-914.
[2] 杨丽春,庞宇斌,李慎刚.超长基坑开挖的空间效应[J].吉林大学学报(地球科学版),2015,45(2):541-545. Yang Lichun,Pang Yubin,Li Shengang. Spatial Effect of Super Long Foundation Pit Excavation[J]. Journal of Jilin University (Earth Science Edition),2015,45(2):541-545.
[3] 孙超,许成杰.基坑开挖对周边环境的影响[J].吉林大学学报(地球科学版),2019,49(6):1698-1705. Sun Chao,Xu Chengjie. Influence of Foundation Pit Excavation on Surrounding Environment[J]. Journal of Jilin University (Earth Science Edition), 2019,49(6):1698-1705.
[4] 刘杰, 姚海林, 任建喜. 地铁车站基坑围护结构变形监测与数值模拟[J]. 岩土力学, 2010, 31(增刊2):456-461. Liu Jie,Yao Hailin,Ren Jianxi. Deformation Monitoring and Numerical Simulation of Foundation Pit Retaining Structure in Metro Station[J]. Geomechanics,2010,31(Sup.2):456-461.
[5] 夏晋华, 岳鹏威. 深基坑桩锚支护体系位移数值分析[J]. 地下空间与工程学报, 2014, 10(4):848-853. Xia Jinhua,Yue Pengwei.Numerical Analysis of Displacement of Pile-Anchor Retaining System in Deep Foundation Pit[J]. Journal of Underground Space and Engineering, 2014, 10(4):848-853.
[6] 周勇,朱亚薇.深基坑桩锚支护结构和土体之间协同作用[J].岩土力学,2018,39(9):3246-3252. Zhou Yong, Zhu Yawei. Interaction Between Pile-Anchor Etarining Structure and Soil Mass in Deep Foundation Pit[J]. Geomechanics, 2018, 39(9):3246-3252.
[7] 徐勇,杨挺,王心联,桩锚支护体系在大型深基坑工程中的应用[J].地下空间与工程学报,2006, 2(4):646-665. Xu Yong, Yang Ting, Wang Xinlian, Application of Pile Anchor Support System in Large Deep Foundation Pit Project.[J]. Chinese Journal of Underground Space and Engineering, 2006, 2(4):646-665.
[8] 蔡根生.装配式和装配整体式地下连续墙新技术探讨[J].地下工程与隧道,1996(4):30-33. Cai Gensheng. Discussion on the New Technology of Assembling and Assembling Integral Diaphragm Wall[J]. Underground Engineering and Tunnels,1996(4):30-33.
[9] 沈晶晶.装配式型钢斜抛撑在基坑支护工程中的应用[J].山西建筑,2016(7):98-99. Shen Jingjing. The Application of Prefabricated Steel Cast Diagonal Brace in Foundation Pit Support Engineering[J]. Shanxi Architecture,2016(7):98-99.
[10] 王复明,方宏远,潘艳辉,等.一种柔性复合装配式可回收矩形工作井支护结构的设计施工方法:CN109056746A[P].2018-12-21. Wang Fuming, Fang Hongyuan, Pan Yanhui,et al. Design and Construction Method of Flexible Composite Prefabricate Recyclable Rectangular Working Well Support Structure:CN109056746A[P].2018-12-21.
[11] Pan Y H, Fang H Y, Li B, et al. Stability Analysis and Full-Scale Test of a New Recyclable Supporting Structure for Underground Ecological Granaries[J]. Engineering Structures, 2019,192:205-219.
[12] 李玉岐,周旋,谢康和.坑外荷载对软土地区基坑开挖变形性状的影响[J].建筑科学与工程学报,2016,33(4):97-102. Li Yuqi, Zhou Xuan, Xie Kanghe. Influence of External Load on Deformation Behavior of Foundation Pit Excavation in Soft Soil Area[J]. Journal of Architecture and Civil Engineering, 2016,33(4):97-102.
[1] 师文豪, 杨天鸿. 渗流应力耦合作用下顺倾向层状边坡各向异性渗流特征数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1783-1788.
[2] 蔡晓光, 徐洪路, 李思汉, 张少秋. 地震作用下返包式加筋土挡墙数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1416-1426.
[3] 李立云, 王子英, 王晓静, 杜修力. 近铁路基坑通风井段变形特征及其机制分析[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1441-1451.
[4] 魏家斌, 王卫东, 吴江斌. 免共振沉桩过程对地表振动影响的FLAC3D数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1514-1522.
[5] 李一赫, 王殿举, 于法浩, 刘志强. 下刚果盆地白垩系盐构造的形成演化[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1628-1638.
[6] 吕雅馨, 骆祖江, 徐成华. 南京汤山地区地热水资源评价[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1844-1853.
[7] 盛冲, 许鹤华, 张云帆, 张文涛, 任自强. 钙质砂水理性质及对岛礁淡水透镜体形成的影响[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1127-1138.
[8] 段云星, 杨浩. 增强型地热系统采热性能影响因素分析[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1161-1172.
[9] 孙超, 许成杰. 基坑开挖对周边环境的影响[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1698-1705.
[10] 王常明, 李桐, 田书文, 李硕. 基于LAHARZ的泥石流堆积范围预测模型的建立及应用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1672-1679.
[11] 孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1723-1731.
[12] 常晓军, 葛伟亚, 于洋, 赵宇, 叶龙珍, 张泰丽, 魏振磊. 福建省永泰县东门旗山滑坡诱发机理与防治措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1063-1072.
[13] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
[14] 尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 755-761.
[15] 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .